精英家教网 > 初中数学 > 题目详情
精英家教网用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是(  )
A、c2=a2+b2B、c2=a2+2ab+b2C、c2=a2-2ab+b2D、c2=(a+b)2
分析:四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.
解答:解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,
里边的小四边形也为正方形,边长为b-a,
则有c2=
1
2
ab×4+(b-a)2
整理得:c2=a2+b2
故选A.
点评:此题考查了整式的混合运算,根据题意列出相应的等式是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、现将四个全等的直角梯形透明纸片,分别放在方格纸中,方格纸的每个小正方形的边长均为1,并且直角梯形的每个顶点与小正方形的顶点重合.请你仿照例①,按如下要求拼图.
要求:①用四个全等的直角梯形,按实际大小拼成符合要求的几何图形;
②拼成的几何图形互不重叠,且不留空隙;
③拼成的几何图形的各顶点必须与小正方形的顶点重合.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、我们把两个能够互相重合的图形成为全等形.
(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;
(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.
精英家教网
(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为
 
cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是
 
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临汾二模)如图1所示,正方形网格中有四个全等的直角梯形,网格中每个小正方形的边长均为1,现用这四个直角梯形在网格中拼图.(直角梯形每个顶点与小正方形顶点重合)
在图2中拼出一个轴对称但不是中心对称的图形;在图3中拼出一个既是轴对称又是中心对称的图形.

查看答案和解析>>

同步练习册答案