精英家教网 > 初中数学 > 题目详情
24、如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.
分析:连接OP、CP.先由直径所对的圆周角是直角得到Rt△APC,根据斜边上的中线等于斜边的一半可知PQ=CQ,所以∠QPC=∠QCP,利用等边对等角把角之间的数量关系与∠BCA=90°结合得到∠OPQ=90°,再根据点P在⊙O上可判断PQ是⊙O的切线.
解答:解:直线PQ与⊙O的位置关系是:相切.
其理由如下:
①连接OP、CP.
∵BC是直径,
∴CP⊥AB,
在Rt△APC中,Q为斜边AC的中点;
∴PQ=CQ,
∴∠QPC=∠QCP;
又OP=OC,
∴∠OPC=∠OCP,
又∠BCA=90°,
∴∠OPQ=90°且P在⊙O上,
∴直线PQ与⊙O的位置关系是:相切.

②用三角形全等或者角的和(差)也可证明.
点评:本题要准确的做出辅助线才能快捷准确的解题.利用直径所对的圆周角是直角构造直角三角形是常用的方法.注意切线的判定:经过半径的外端并与半径垂直的直线是圆的切线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案