【题目】如图,在矩形
中,
,
相交于点
,
平分
交
于点
,若
,则
________.
![]()
【答案】![]()
【解析】
判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO是等边三角形,根据等边三角形的性质求出OB=AB,再求出OB=BE,然后根据等腰三角形两底角相等求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE计算即可得解.
解:∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴∠AEB=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∵∠CAE=15°,
∴∠ACE=∠AEB-∠CAE=45°-15°=30°,
∴∠BAO=90°-30°=60°,
∵矩形中OA=OB,
∴△ABO是等边三角形,
∴OB=AB,∠ABO=∠AOB=60°,
∴OB=BE,
∵∠OBE=∠ABC-∠ABO=90°-60°=30°,
∴∠BOE=
(180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE,
=60°+75°,
=135°.
故答案为:135°.
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )
![]()
A. △ADF≌△CGE
B. △B′FG的周长是一个定值
C. 四边形FOEC的面积是一个定值
D. 四边形OGB'F的面积是一个定值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的解析式是
,则下列说法正确的是( )
A. 抛物线的对称轴是直线
B. 抛物线的顶点坐标是
C. 该二次函数有最小值
D. 当
时,
随
的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在
中,
,
,垂足为点
,
是
外角
的平分线,
,垂足为点
,连接
交
于点
.
![]()
求证:四边形
为矩形;
当
满足什么条件时,四边形
是一个正方形?并给出证明.
在
的条件下,若
,求正方形
周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com