【题目】如图,
是半径为
的⊙
的直径,直线
与
所在直线垂直,垂足为
,
,点
是⊙
上异于
、
的动点,直线
、
分别交
于
、
两点.
![]()
(1)当点
为
中点时,连接
,
,判断直线
与⊙
是否相切并说明理由.
(2)点
是⊙
上异于
、
的动点,以
为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.
【答案】(1)CP为⊙O切线,理由详见解析;(2)以 MN 为直径的动圆过定点D,CD=![]()
【解析】
(1)如图1,根据同角的余角相等可得:∠AMC=∠ABP=∠OPB,从而得OP⊥PC,可知:直线PC与⊙O相切;
(2)如图2,设该圆与AC的交点为D,连接DM、DN,证△MDC∽△DNC得比例式,同理证△ACM∽△NCB,得DC的长,则以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为
,同理在MN的右侧 还有一个点D',到C的距离也是
..
(1)直线PC与⊙O相切,
理由是:如图所示:
∵AC⊥MN,
∴∠ACM=90°,
∴∠A+∠AMC=90°,
∵AB是⊙O的直径,
∴∠APB=∠NPM=90°,
∴∠PNM+∠AMC=90°=∠A+∠ABP,
∴∠ABP=∠AMC,
∵OP=OB,
∴∠ABP=∠OPB,
Rt△PMN中,C为MN的中点,
∴PC=CN,
∴∠PNM=∠NPC,
∴∠OPC=∠OPB+∠NPC=∠ABP+∠PNM=∠AMC+∠PNM=90°,
即OP⊥PC,
∴直线PC与⊙O相切;
(2)如图2,设该圆与AC的交点为D,连接DM、DN,
∵MN为直径,
∴∠MDN=90°,
则∠MDC+∠NDC=90°,
∵∠DCM=∠DCN=90°,
∴∠MDC+∠DMC=90°,
∴∠NDC=∠DMC,
则△MDC∽△DNC,
∴
,即DC2=MCNC
∵∠ACM=∠NCB=90°,∠A=∠BNC,
∴△ACM∽△NCB,
∴
,即MCNC=ACBC;
即ACBC=DC2,
∵AC=AO+OC=2+3=5,BC=3-2=1,
∴DC2=5,
∴DC=
,
∵MN⊥DD',
∴D'C=DC=
,
∴以MN为直径的一系列圆经过两个定点D和D',此定点在C的距离都是
.
![]()
科目:初中数学 来源: 题型:
【题目】如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.
![]()
(1)MN是否穿过原始森林保护区?为什么?(参考数据:
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2-12ax+36a-5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.
(1)求证:∠C=90°;
(2)当BC=3,sinA=
时,求AF的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,
≈1.4)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以RtABC的直角边AC为直径作O交斜边AB于点E,连接EO并延长交BC的延长线于点D,作OF//AB交BC于点F,连接EF、EC.
(1)求证:OFCE;
(2)求证:EF是O的切线;
(3)若O的半径为3,EAC60,求tanADE
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=(x-2)2+m与x轴交于点A和B,与y轴交于点C,点D是点C关于抛物线对称轴的对称点,若点A的坐标为(1,0),直线y2=kx+b经过点A,D.
(1)求抛物线的函数解析式;
(2)求点D的坐标和直线AD的函数解析式;
(3)根据图象指出,当x取何值时,y2>y1.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:
,结果保留整数.)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com