精英家教网 > 初中数学 > 题目详情
6、如图,其中以已标注大写字母的点为顶点的角(小于180°)共有(  )
分析:分别数出以A、B、C、D、O为顶点的角(小于180°)相加即可.
解答:解:以A为顶点的角∠BAO,∠BAD,∠OAD;
以B为顶点的角∠ABO,∠ABC,∠OBC;
以C为顶点的角∠BCD,∠BCO,∠DCO;
以D为顶点的角∠CDO,∠CDA,∠ODA;
以O为顶点的角∠AOB,∠AOD,∠COB,∠COD.
共计16个.
故选B.
点评:此题考查了角的概念,找到图中的所有角,按顺序进行统计是解题的关键,可以做到不漏数、不多数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•新区二模)在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
(1)第一小组的同学发现,在如图1-1的矩形ABCD中,AC、BD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程
将△ABC绕点O旋转180°后可得到△ADC
将△ABC绕点O旋转180°后可得到△ADC


(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B′处(如图2-2),这样能得到∠B′GC的大小,你知道∠B′GC的大小是多少吗?请写出求解过程.
(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15
15
,请你帮助该小组求出a可能的最大整数值.

(4)探究活动结束后,老师给大家留下了一道探究题:
如图4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,请利用图形变换探究S△AOB′+S△BOC′+S△COA′
3
的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•连云港)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(
9
2
9
2
)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2012年北师大版初中数学七年级上4.3角的度量与表示练习卷(解析版) 题型:选择题

如图,其中以已标注大写字母的点为顶点的角(小于180 º)共有(  )

A.12个      B.16个       C.20个      D.24个

 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,其中以已标注大写字母的点为顶点的角(小于180 º)共有


  1. A.
    12个
  2. B.
    16个
  3. C.
    20个
  4. D.
    24个

查看答案和解析>>

同步练习册答案