精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,直线与x轴、y轴分别交于A、B两点,过点A作CA⊥AB,CA=,并且作CD⊥x轴.
(1)求证:△ADC∽△BOA;
(2)若抛物线y=-x2+bx+c经过B、C两点.
①求抛物线的解析式;
②该抛物线的顶点为P,M是坐标轴上的一个点,若直线PM与y轴的夹角为30°,请直接写出点M的坐标.

【答案】分析:(1)根据互余关系易得∠C=∠BAO,又有∠CDO=∠AOB=90°,易得△ADC∽△BOA;
(2)①由题意得,A、B的坐标,结合(1)的结论,得到AD、CD的长,进而可得抛物线的解析式;
②根据P的坐标及三角函数的意义,易得点M的坐标.
解答:解:(1)∵CD⊥AB
∴∠BAC=90°
∴∠BAO+∠CAD=90°
∵CD⊥x轴
∴∠CDA=90°
∴∠C+∠CAD=90°
∴∠C=∠BAO
又∵∠CDO=∠AOB=90°
∴△ADC∽△BOA;

(2)①由题意得,A(-8,0),B(0,4)
∴OA=8,OB=4,AB=
∵△ADC∽△BOA,CA=
∴AD=2,CD=4
∴C(-10,4)
将B(0,4),C(-10,4)代入y=-x2+bx+c

∴y=-x2-10x+4
②M1(0,),M2(0,),M3,0),M4,0).
点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案