精英家教网 > 初中数学 > 题目详情
正方形ABCD边长为4,点E是边AB上的动点(点E不与A、B重合),线段DE的垂直平分线和边AD、BC分别交于点F、G,和DE交于点H.
(1)直接写出∠GFD的范围(用不等式表示,不必说明理由);
(2)求证:FG=DE;
(3)设AE=x,四边形AFGB的面积为y,当x为多少时,y的值最大?此时y的最大值是多少?

【答案】分析:(1)当点E在A处时,AD与ED重合,FG垂直平分ED,就有∠GFD=90°,当点E与点B重合时,FG垂直平分ED,根据正方形的性质可以得出∠GFD=∠CAD=45°,从而可以得出结论;
(2)过点F作FN⊥BC于N,可以得出四边形ABNF是矩形,就有FN=AB=AD,进而得出∠AED=∠BGF,再通过证明△AED≌△NGF就可以得出结论;
(3)连接EF,设AF=a,那么EF=DF=4-a,在Rt△AEF中,AE2+AF2=EF2,即:a2+x2=(4-a)2,就可以求出a=,再根据梯形的面积公式就可以表示出y的关系式,从而可以求出结论.
解答:解:(1)当点E在A处时,AD与ED重合,FG垂直平分ED,就有∠GFD=90°,
当点E与点B重合时,ED与BD重合,FG垂直平分ED,就是FG垂直平分BD,
则∠GFD=∠CAD=45°,
∵点E不与A、B重合,
∴45°<∠GFD<90°;

(2)过点F作FN⊥BC于N,
则∠BNF=∠FNG=90°.
∵四边形ABCD是正方形,
∴∠A=∠B=90°,AB=BC=CD=AD.
∴四边形ABNF是矩形,
∴FN=AB=AD,
∵ED⊥FG,
∴∠EHG=90°,
∴∠EHG+∠B=180°.
∵四边形BEHG的内角和是360°,
∴∠BED+∠BGH=180°.
∵∠AED+∠BED=180°,
∴∠AED=∠BGF,
∵∠A=∠FNG=90°.
∵在△AED和△NGF中,

∴△AED≌△NGF(AAS),
∴DE=FG,AE=NG;

(3)如图,连接EF,设AF=a,
∴FD=4-a.
∵FG垂直平分ED,
∴EF=FD,
∴EF=4-a.
在Rt△AEF中,由勾股定理,得
AE2+AF2=EF2
∴a2+x2=(4-a)2
∴a=
∵AF≤BG,即点N在线段BG上,且AE=x,
∴BG=BN+GN=x+
∴y=(AF+BG)×AB=2(+x+),
=-x2+2x+8,
=-(x-2)2+10(0<x<4).
∴当x=2时,y有最大值,最大值是10.
点评:本题是一道相似形的综合试题,考查了全等三角形的判定及性质的运用,中垂线的性质的运用,梯形的面积公式的运用,二次函数的性质的运用,解答本题作辅助线证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD边长为2cm,以点B为圆心,AB的长为半径作弧
AC
,则图中阴影部分的面积为(  )
A、(4-π)cm2
B、(8-π)cm2
C、(2π-4)cm2
D、(π-2)cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD边长为2,点E在CB的延长线上,BD=BE,则tan∠BAE的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形ABCD边长为4cm,E,F分别为CD,BC的中点,动点P在线段AB上从B?A以2cm/精英家教网s的速度运动,同时动点Q在线段FC上从F?C以1cm/s的速度运动,动点G在PC上,且∠EGC=∠EQC,连接PD.设运动时间为t秒.
(1)求证:△CQE∽△APD;
(2)问:在运动过程中CG•CP的值是否发生改变?如果不变,请求这个值;若改变,请说明理由;
(3)当t为何值时,△CGE为等腰三角形并求出此时△CGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;
(3)梯形ABCN的面积是否可能等于11?为什么?

查看答案和解析>>

同步练习册答案