精英家教网 > 初中数学 > 题目详情
(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若
CG
GB
=
1
k
,则
AD
AB
=
k+1
2
k+1
2
用含k的代数式表示).
分析:根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.
解答:解:∵点E是边CD的中点,
∴DE=CE,
∵将△ADE沿AE折叠后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
连接EG,
在Rt△ECG和Rt△EFG中,
EG=EG
CE=EF

∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
设CG=a,∵
CG
GB
=
1
k

∴GB=ka,
∴BC=CG+BG=a+ka=a(k+1),
在矩形ABCD中,AD=BC=a(k+1),
∴AF=a(k+1),
AG=AF+FG=a(k+1)+a=a(k+2),
在Rt△ABG中,AB=
AG2-BG2
=
[a(k+2)]2-(ka)2
=2a
k+1

AD
AB
=
a(k+1)
2a
k+1
=
k+1
2

故答案为:
k+1
2
点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为
(2,4-2
2
(2,4-2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧
BC
的弧长为
1
3
π
1
3
π
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是
△DFG或△DHF
△DFG或△DHF
(只需要填一个三角形)
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).

查看答案和解析>>

同步练习册答案