精英家教网 > 初中数学 > 题目详情
17.如图,等腰直角△ABC,∠BAC=90°,点E是边AB上的任意一点(E与A,B两点不重合),过点E作ED⊥CE,过点B作BD⊥BC,BD与ED相交于点D.

(1)当点E是AB边中点时.如图1,CE与DE有怎样的数量关系;
(2)当点E不是AB边中点时.如图2,CE与DE有怎样的数量关,并说明理山;
(3)当点E在AB的延长线上时.如图3.CE与DE有怎样的数量关系.并说明理由.

分析 (1)结论:CE=DE.如图1中,取AC的中点M,连接EM.只要证明△CME≌△EBD,即可解决问题.
(2)结论:CE=DE.如图2中,在AC上取一点M,使得CM=EB,只要证明△CME≌△EBD,即可解决问题.
(3)结论:CE=DE.如图3中,在AC的延长线上取一点M,使得CM=BE,只要证明△CME≌△EBD,即可解决问题.

解答 解:(1)结论:CE=DE,理由如下,
如图1中,取AC的中点M,连接EM.

∵AC=AB,∠A=∠CED=90°,
∴∠DEB+∠AEC=90°,∠MEC+∠ACE=90°,∠ABC=45°,
∴∠MCE=∠DEB,
∵AM=MC,AE=EB,
∴MC=EB,AM=AE,
∴∠AME=45°,∠CME=135°,
∵BD⊥BC,
∴∠DBC=90°,∠EBD=135°,
∴∠CME=∠EBD,
在△CME和△EBD中,
$\left\{\begin{array}{l}{∠MCE=∠DEB}\\{CM=EB}\\{∠CME=∠EBD}\end{array}\right.$,
∴△CME≌△EBD,
∴CE=ED.

(2)结论:CE=DE,理由如下,
如图2中,在AC上取一点M,使得CM=EB,

∵AC=AB,CM=EB,
∵AM=AE,∵∠A=90°,
∴∠AME=45°,
∴∠CME=135°=∠EBD,
在△CME和△EBD中,
$\left\{\begin{array}{l}{∠MCE=∠DEB}\\{CM=EB}\\{∠CME=∠EBD}\end{array}\right.$,
∴△CME≌△EBD,
∴CE=ED.


(3)结论:CE=DE,理由如下,
如图3中,在AC的延长线上取一点M,使得CM=BE,

∵AC=AB,CM=EB,
∵AM=AE,∵∠A=90°,
∴∠AME=45°=∠DBE,
∵∴∠DEF+∠AEC=90°,∠ACE+∠AEC=90°,
∴∠ACE=∠DEF,
∴∠MCE=∠BED,
在△CME和△EBD中,
$\left\{\begin{array}{l}{∠MCE=∠DEB}\\{CM=EB}\\{∠CME=∠EBD}\end{array}\right.$,
∴△CME≌△EBD,
∴CE=ED.

点评 本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在△ABC中,∠ACB=90°,经过点B的直线l(不与直线AB重合)与直线BC的夹角∠DBC=∠ABC,分别过点C、A作直线l的垂线,垂足分别为点D、E.
(1)问题发现
①若∠ABC=30°,如图①,则$\frac{CD}{AE}$=$\frac{1}{2}$;②若∠ABC=45°,如图②,则$\frac{CD}{AE}$=$\frac{1}{2}$.
(2)拓展探究
当0°<∠ABC∠90°,$\frac{CD}{AE}$的值由有无变化?请仅就图③的情形给出证明.
(3)问题解决
随着△ABC的位置旋转,若直线CE、AB交于点F,且$\frac{CF}{EF}$=$\frac{5}{6}$,CD=4,请直接写出线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
(1)求证:AD∥CG;
(2)求证:△ACF≌△CBG;
(3)若CF=12,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F.
①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=$\frac{1}{3}$S△COF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,△ABC的中线BD、CE交于点O.
(1)求证:$\frac{OD}{OB}$=$\frac{1}{2}$;
(2)求证:△ABC的三条中线交于一点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.20072-2006×2008(用简便方法计算)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:(1)-100÷10×(-$\frac{1}{10}$)2;(2)2.5÷[($\frac{1}{5}$-1)×(2+$\frac{1}{2}$)].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.某人在路上行走,速度为2米秒,一辆车身长是18米的货车从他背后驶来,并从他身旁开过,驶过的时间是1.5秒,则货车的速度为14米/秒.

查看答案和解析>>

同步练习册答案