精英家教网 > 初中数学 > 题目详情
已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点;
(3)关于x的一元二次方程(m-1)x2+(m-2)x-1=0有两个不相等的整数根,把抛物线y=(m-1)x2+(m-2)x-1向右平移3个单位长度,求平移后的解析式.
分析:(1)根据b2-4ac与零的关系即可判断出的关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数)的解的情况;
(2)用十字相乘法来转换y=(m-1)x2+(m-2)x-1,即y=[(m-1)x-1](x+1),则易解;
(3)利用(2)的解题结果x=-1,再根据两根之积等于-
1
m-1
是整数,得出m的值,进而得出平移后的解析式.
解答:解:(1)根据题意,得
△=(m-2)2-4×(m-1)×(-1)>0,即m2>0
解得,m>0或m<0        ①
又∵m-1≠0,
∴m≠1                ②
由①②,得
m<0,0<m<1或m>1.

证明:(2)由y=(m-1)x2+(m-2)x-1,得
y=[(m-1)x-1](x+1)
抛物线y=[(m-1)x-1](x+1)与x轴的交点就是方程[(m-1)x-1](x+1)=0的两根.
解方程,得
x+1=0(1)
(m-1)x-1=0(2)

由(1)得,x=-1,即一元二次方程的一个根是-1,
∴无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点(-1,0).

(3)∵x=-1是整数,
∴只需
1
m-1
是整数.
∵m是整数,且m≠1,m≠0,
∴m=2,
当m=2时,抛物线的解析式为y=x2-1,
把它的图象向右平移3个单位长度,
则平移后的解析式为y=(x-3)2-1.
点评:(1)在解一元二次方程的根时,利用根的判别式△=b2-4ac与0的关系来判断该方程的根的情况;
(2)用十字相乘法对多项式进行分解,可以降低题的难度;
(3)函数图象平移规律是向右或向左平移时X=|x+d|;向上或向下平移时Y=|y+d|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数.
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

同步练习册答案