已知抛物线
与
轴交于
点,与
轴交于
,
两点,顶点
的纵坐标为
,若
,
是方程
的两根,且
.
(1)求
,
两点坐标;
(2)求抛物线表达式及点
坐标;
(3)在抛物线上是否存在着点
,使△
面积等于四边形
面积的2倍,若存在,求出
点坐标;若不存在,请说明理由.
(1)
,
;(2)
,
;
(3)![]()
【解析】
试题分析:(1)根据韦达定理可得出A、B两点横坐标的和与积,联立
,可求出m的值,进而可求出A、B的坐标.
(2)根据A、B的坐标,可得出抛物线的对称轴的解析式,即可求出其顶点M的坐标,根据得出的A、B、M三点的坐标,即可用待定系数法求出抛物线的解析式.
(3)可先求出四边形ACMB的面积(由于四边形ACMB不规则,因此其面积可用分割法进行求解).然后根据ACMB的面求出P点的纵坐标的绝对值,将其代入抛物线的解析式中即可求出P点的坐标.
(1)由
,
,
,得
,
,
,
,
.
(2)
抛物线过
,
两点,其对称轴为
,顶点纵坐标为
,
抛物线为
.
把
,
代入得
,
抛物线函数式为
,其中
.
(3)存在着
点.
,
,
,
,![]()
,
,
即
.
,
.把
代入抛物线方程得
,
,
或
.
考点:本题考查的是二次函数的应用
点评:解答本题的关键是熟练掌握一元二次方程根与系数的关系,二次函数解析式的确定、图形的面积求法等知识及综合应用知识、解决问题的能力.
科目:初中数学 来源: 题型:
在平面直角坐标系中,已知抛物线
与
轴交于点
、
(点
在点
的左侧),与
轴的正半轴交于点
,顶点为
.
(Ⅰ)若
,
,求此时抛物线顶点
的坐标;
(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满足
S△BCE = S△ABC,求此时直线
的解析式;
(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足
S△BCE = 2S△AOC,且顶点
恰好落在直线
上,求此时抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知抛物线与
轴交于点
,
,与y轴交于点
.
![]()
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交
轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知抛物线
与
轴交于点
,且经过
两点,点
是抛物线顶点,
是对称轴与直线
的交点,
与
关于点
对称.
(1)求抛物线的解析式;
(2)求证:
;
(3)在抛物线的对称轴上是否存在点
,使
与
相似.若有,请求出所有符合条件的点
的坐标;若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com