精英家教网 > 初中数学 > 题目详情

二次函数的图象与x轴交于A,B两点,与y轴交于点C,如图所示,AC=2数学公式,BC=数学公式,∠ACB=90°,求二次函数图象的关系式.

解:∵AC=2,BC=,∠ACB=90°,
∴AB==5;
∵∠AOC=∠ACB=90°,∠CAO=∠BAC,△AOC∽△ACB,

即AO=AC2÷AB=4,
∴AO=4,
∴BO=1;
∴A(-4,0),B(1,0);
同理可证△ACO∽△CBO


∴CO2=4,
∴OC=2,
∴C(0,-2),
设二次函数关系式为y=ax2+bx+c,
把A(-4,0),B(1,0),C(0,-2)分别代入上式,得

解得
∴所求二次函数图象的关系式为y=
分析:Rt△ABC中,由勾股定理易求得AB的长,利用射影定理即可得到AC2=AO•AB,从而求得AO、BO的值,进而由OC2=OA•OB,求得OC的长,由此可得A、B、C三点的坐标,进而可利用待定系数法求得抛物线的解析式.
点评:此题主要考查的是二次函数解析式的确定、通过直角三角形和相似三角形的相关知识求得A、B、C三点的坐标,是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴两交点间的距离为2,若将图象沿y轴方向向上平移3个单位,则图象恰好经过原点,且与x轴两交点间的距离为4,求原二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数的图象与x轴的两交点的横坐标为1和-7,且经过点(-3,8).求:
(1)这个二次函数的解析式;
(2)试判断点A(-1,2)是否在此函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:一次函数y=-
12
x+2
的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).
(1)说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;
(2)若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;
(3)若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形?若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知二次函数y=-x2+mx+n,当x=3时,有最大值4.
(1)求m、n的值.
(2)设这个二次函数的图象与x轴的交点是A、B,求A、B点的坐标;
(3)当y<0时,求x轴的取值范围;
(4)有一圆经过点A、B,且与y轴的正半轴相切于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c经过(-2,0)、(4,0)、(0,3)三点.
(1)求这条抛物线的解析式.
(2)怎样平移此抛物线,使该二次函数的图象与x轴只有一个交点?

查看答案和解析>>

同步练习册答案