精英家教网 > 初中数学 > 题目详情
19、关于x的方程x2-2x+k-1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若k-1是方程x2-2x+k-1=0的一个解,求k的值.
分析:(1)关于x的方程x2-2x+k=0有两个不相等的实数根,即判别式△=b2-4ac>0,即可得到关于k的不等式,从而求得k的范围.
(2)把x=k-1代入方程x2-2x+k=0,整理后,解以k为未知数的二元一次方程即可,注意k的取值范围.
解答:解:(1)由题意,知(-2)2-4(k-1)>0,
解得k<2,
即k 的取值范围为k<2.

(2)由题意,得(k-1)2-2(k-1)+k-1=0
即k2-3k+2=0
解得k1=1,k2=2(舍去)
∴k的值为1.
点评:本题考查了一元二次方程的解及因式分解法解一元二次方程等知识.一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2+x-
1
4
k=0
没有实数根,那么k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用配方法解关于x的方程x2+px=q时,应在方程两边同时加上(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x+k=0的一根是2,则k=
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

通过观察,发现方程不难求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)观察上述方程及其解,可猜想关于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)试验证:当x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的结论,解关于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
无解,求a的值?

查看答案和解析>>

同步练习册答案