精英家教网 > 初中数学 > 题目详情
如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=______.
因为△ABP绕点B顺时针方向旋转60°,得到△CBP′,
∴∠PBP′=60°,BP=BP′,
∴△BPP′为等边三角形,
∴PP′=BP=3.
故答案为3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
mh
m-n
.图(4)与图(6)中的等式有何关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知OA=10,P是射线ON上一动点(即P可在射线ON上运动),∠AON=60°.
(1)当OP=______时,△AOP为等边三角形.
(2)当OP=______时,△AOP为直角三角形.
(3)当OP为______时,△AOP为锐角三角形.
(4)当OP为______时,△AOP为钝角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,∠A=∠ACB.
(1)求证:△ABC是等边三角形;
(2)若D为AB的中点,P为CD上的点,Q为PC的中点,且PE⊥AC于点E,QF⊥BC于点F,试求
4PE
QF
的立方根.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个全等的等边三角形△ABC,△DEF的一边重叠地放在直线l上,AC,DE交于点P,
(1)判断△PCE的形状,并说明理由:
(2)写出图中所有的与线段PA相等的线段;
(3)证明:AF=BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你探究△BDE与△DCE中的边、角、面积之间的数量关系,并选择两种写出你的结论:______,______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC是一个等边三角形,它的边AB长为3,D、E、F分别是AB、BC、CA的三等分点,则△DEF的边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形ABCD中,AB=BC=CD=DA=a,∠BAD=120°,M为BC上的点(M不与B、C重合),若△AMN有一角等于60°.
(1)当M为BC中点时,则△ABM的面积为______(结果用含a的式子表示);
(2)求证:△AMN为等边三角形;
(3)设△AMN的面积为S,求出S的取值范围(结果用含a的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2.求BC和DC的长.

查看答案和解析>>

同步练习册答案