【题目】如图,双曲线
经过矩形OABC的边BC的中点E,交AB于点D.设点B的坐标为(m,n).
(1)直接写出点E的坐标,并求出点D的坐标;(用含m,n的代数式表示)
(2)若梯形ODBC的面积为
,求双曲线的函数解析式.
![]()
科目:初中数学 来源: 题型:
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
![]()
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=
x2+
x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.
![]()
(1)求直线l的解析式;
(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;
(3)取点G(0,-1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO-∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走
米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1︰2.则小明从点A走到点D的过程中,他上升的高度为____米;大树BC的高度为____米(结果保留根号).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知
分别为“果圆”与坐标轴的交点,直线
与“果圆”中的抛物线
交于
两点
(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被
轴截得的线段
的长;
(2)如图,
为直线
下方“果圆”上一点,连接
,设
与
交于
,
的面积记为
,
的面积即为
,求
的最小值
(3)“果圆”上是否存在点
,使
,如果存在,直接写出点
坐标,如果不存在,请说明理由
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
![]()
A. 2 B. 3 C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数
的图像与边长是6的正方形
的两边
,
分别相交于
,
两点.
(1)若点
是
边的中点,求反比例函数
的解析式和点
的坐标;
(2)若
,求直线
的解析式及
的面积
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图
,在平面直角角坐标系中,已知抛物线
与
轴交于
,
两点.
(1)求抛物线的函数表达式;
(2)如图
,
轴与抛物线相交于点
,点
是直线
下方抛物线上的动点,过点
且与
轴平行的直线与
,
分别交于点
试探究当点
运动到何处时,线段
的最长,求点
的坐标;
(3)若点
为抛物线的顶点,点
是该抛物线上的一点,在
轴、
轴上分别找点
,使四边形
的周长最小,请求出点
的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=kx+2与x轴、y轴分别交于点A(-1,0)和点B,与反比例函数y=
的图象在第一象限内交于点C(1,n).
(1)求k的值;
(2)求反比例函数的解析式;
(3)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线AB和双曲线y=
交于点P、Q,且PQ=2QD,求点D的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com