精英家教网 > 初中数学 > 题目详情
(2012•和平区二模)矩形ABCD中,点M是边AD上一点,连接BM、CM.
(1)如图,若AM=DM,∠BMC=90°,试判断线段BM与CM的数量关系,并说明理由;
(2)若AB=2
3
,AD=8,∠BMC=90°.①求线段AM的长;②若点N在边BC上,且∠AND=90°,则线段MN的长是
2
3
或2
7
2
3
或2
7

分析:(1)根据矩形的性质得AD=CD,∠A=∠D=90°,则可根据“SAS”判断△ABM≌△DCM,所以BM=CM;
(2)①利用等角的余角相等得到∠ABM=∠CMD,于是可判断Rt△ABM∽Rt△DMC,所以
AB
MD
=
AM
DC
,设AM=x,则DM=8-x,则
2
3
8-x
=
x
2
3
,解得x1=2,x2=6,
②同理可得AN的长为2或6,讨论:当AM=2,AN=2,则MN=AB=2
3
;当AM=2,AN′=6(即N落在N′的位置),利用勾股定理可计算出MN′=2
7
,所以MN的长为2
3
或2
7
解答:解:(1)线段BM与CM的数量关系为相等.理由如下:
∵四边形ABCD为矩形,
∴AD=CD,∠A=∠D=90°,
在△ABM和△DCM中,
AD=DC
∠BAM=∠MDC
AM=DM

∴△ABM≌△DCM(SAS),
∴BM=CM;

(2)①∵∠BMC=90°,
∴∠AMB+∠CMD=90°,
而∠AMB+∠ABM=90°,
∴∠ABM=∠CMD,
∴Rt△ABM∽Rt△DMC,
AB
MD
=
AM
DC

∵AB=2
3
,AD=8,
∴DC=2
3

设AM=x,则DM=8-x,
2
3
8-x
=
x
2
3

解得x1=2,x2=6,
∴AM的长为2或6;
②若点N在边BC上,且∠AND=90°,
同理可得AN的长为2或6,
如图,
当AM=2,AN=2,则MN=AB=2
3

当AM=2,AN′=6(即N落在N′的位置),则NN′=4,
∴MN′=
(2
3
)2+42
=2
7

∴MN的长为2
3
或2
7
点评:本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;相似三角形的对应边的比相等,相似三角形面积的比等于相似比的平方.也考查了矩形的性质、三角形全等与相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,点P是菱形ABCD的对角线AC上一动点(不与点A、C重合).过点P且垂直于AC的直线交菱形ABCD的边于M、N两点.若AC=2,BD=1,设AP=x,S△AMN=y,则y关于x的函数图象的大致形状是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•和平区二模)下列几何体中,主视图与左视图完全相同的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在直角坐标系中,O为坐标原点.已知反比例函数y=
k
x
(k>0)
的图象经过点A(3,m),过点A作AB⊥x轴于点B,△AOB的面积为
1
2

(1)求k和m的值;
(2)点C(x,y)在反比例函数y=
k
x
的图象上,求当-3≤y≤-1时,对应的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•和平区二模)在艺术字中,有些汉字是轴对称图形.下列汉字中,是轴对称图形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在Rt△ADC中,∠ADC=90°,以CD为直径的半圆O交AC于点E,点G是AD的中点.
(Ⅰ)GE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(Ⅱ)若EC=4,DC=6,求直角边AD的长.

查看答案和解析>>

同步练习册答案