精英家教网 > 初中数学 > 题目详情

如图,在△和△中,,为线段上一点,且
求证:

.

解析试题分析:先证明△∽△,再根据相似三角形对应边成比例即可.
证明:∵,

为线段上一点,且,
. 
 .  
=,  
∴△∽△

考点:三角形相似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:Rt△OAB在直角坐标系中的位置如图所示,P(3,4)为OB的中点,点C为折线OAB上的动点,线段PC把Rt△OAB分割成两部分. 问:点C在什么位置时,分割得到的三角形与Rt△OAB相似?(注:在图上画出所有符合要求的线段PC,并写出相应的点C的坐标).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,□ABCD中,E为BC延长线上一点,AE交CD于点F,若,AD=2,∠B=45°,,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),解答下列问题:

(1)当为何值时,PQ∥BC?
(2)设△AQP的面积为y(),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.

(1)求证:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,

(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

同步练习册答案