精英家教网 > 初中数学 > 题目详情
如图所示,已知P为正方形ABCD外的一点.PA=1,PB=2.将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,求∠BP′C的度数.
分析:首先连接PP′,由旋转的性质,可求得PP′的长,∠BPP′=45°,然后由勾股定理的逆定理,证得∠APP′=90°,继而求得答案.
解答:解:连接PP′,
∵△ABP绕点B顺时针旋转90°,使点P旋转至点P′,
∴P′B=PB=2,∠PBP′=90°,
∴PP′=
PB2+P′B2
=2
2
,∠BPP′=45°,
∵PA=1,AP′=3,
∴PA2+PP′2=AP′2
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=135°,
∴∠BP′C=∠APB=135°.
点评:此题考查了旋转的性质、等腰直角三角形的性质以及勾股定理的逆定理.此题难度适中,注意掌握辅助线的作法,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角精英家教网三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)如图所示,已知A(
1
2
,y1),B(2,y2)为反比例函数y=
1
x
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(  )

查看答案和解析>>

科目:初中数学 来源:2013届浙江省桐乡三中九年级上学期期中考试数学试卷(带解析) 题型:单选题

如图所示,已知为反比例函数图像上的两点,动点正半轴上运动,当线段与线段之差达到最大时,点的坐标是(   )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省九年级上学期期中考试数学试卷(解析版) 题型:选择题

如图所示,已知为反比例函数图像上的两点,动点正半轴上运动,当线段与线段之差达到最大时,点的坐标是(    )

 

A.       B.       C.       D.

 

查看答案和解析>>

科目:初中数学 来源:湖北省中考真题 题型:单选题

如图所示,已知为反比例函数图像上的两点,动点正半轴上运动,当线段与线段之差达到最大时,点的坐标是
[     ]
A.                         
B.     
C.                         
D.

查看答案和解析>>

同步练习册答案