精英家教网 > 初中数学 > 题目详情
11、如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,则EF与AD的关系是
AD垂直平分EF
分析:利用角的平分线上的点到角的两边的距离相等,得到△AED≌△AFD,可知AE=AF,得到△AEO≌△AFO,OE=OF,AD⊥EF.
解答:解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴∠EAD=∠FAD,∠AED=∠AFD=90°,AD=AD,
∴△AED≌△AFD(AAS),
∴AE=AF
∵AD是△ABC的角平分线,
∴OE=OF,AD⊥EF
∴AD垂直平分EF.
故答案为:AD垂直平分EF.
点评:本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形全等的判定及性质;证得△AEO≌△AFO是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案