精英家教网 > 初中数学 > 题目详情
如图,△ABC中,点E是AB、BC的垂直平分线的交点,AE的延长线交BC于点D,AB=AD,AE=BD,求∠DAC的度数.
分析:由线段垂直平分线的性质可得出AE=BE=CE,由等边对等角可知∠EAB=∠EBA,∠EBD=∠ECB,∠EAC=∠ECA,再根据AE=BD,可知BE=BD,由等腰三角形的性质及三角形外角的性质可得∠BAC=∠BCA,继而证得AB=BC,然后设∠BAD=x,由AE=BE可知∠AEE=x,根据∠BED是△ABE的外角,可知∠BED=2x,由三角形内角和定理可求出x的度数,再根据等腰三角形的性质即可得出结论.
解答:解:∵点E是AB,BC的垂直平分线的交点,
∴AE=BE=CE,
∴∠EAB=∠EBA,∠EBD=∠ECB,∠EAC=∠ECA
∵AE=BD,
∴BE=BD,
∴∠BED=∠BDE
又∵AB=AD,
∴∠ABD=∠BDE,
∴∠BED=∠ABD
∵∠BED=∠EAB+∠ABE,∠ABD=∠ABE+∠DBE,
∴∠EAB=∠EBD
又∵∠EAB=∠EBA,∠EBD=∠ECB,
∴∠EAB=∠ECB,
∴∠EAC+∠EAB=∠ECB+∠ECA,即∠BAC=∠BCA,
∴AB=BC;
设∠BAD=x,
∵AE=BE,
∴∠AEE=x,
∵∠BED是△ABE的外角,
∴∠BED=2x,
∵BE=BD,
∴∠ADB=∠BED=2x,
∵AB=AD,
∴∠ABD=2x,
∴∠BAD+∠ABD+∠ADB=x+2x+2x=180°,解得x=36°,
∴∠ABD=72°,
∵AB=BC,
∴∠BAC=
180°-∠ABD
2
=54°,
∴∠DAC=∠BAC-∠BAD=54°-36°=18°.
点评:本题考查的是线段垂直平分线的性质、等腰三角形的性质及三角形外角的性质,在解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,△ABC中,点D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.已给的图形中存在哪几对相似三角形?请选择一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为AB边上的一点,点F为BC延长线上一点,DF交AC于点E.下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D在BC上,点E在AB上,BD=BE,下列四个条件中,不能使△ADB≌△CEB的条件是(  )

查看答案和解析>>

同步练习册答案