【题目】垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了“垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:
![]()
(1)本次接受随机抽样调查的学生人数为 ,图1中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.
【答案】(1)50;32;(2)平均数为6.56元,众数为5元;中位数为5元;(3)该校本次活动捐款金额为5元的学生人数为504人.
【解析】
(1)根据条形图可得接受随机抽样调查的学生人数,用5元的人数除以总数可得m%,进而可得m的值;(2)根据平均数、众数和中位数定义进行计算即可;(3)利用样本估计总体的方法进行计算.
(1)接受随机抽样调查的学生人数为:4+12+16+10+8=50(人),
m%=
×100%=32%,
则m=32,
故答案为:50;32;
(2)平均数:(4×1+12×2+16×5+10×10+15×8)÷50=6.56(元),
众数:5元;
中位数:5元;
(3)2100×24%=504(人)
答:该校本次活动捐款金额为5元的学生人数为504人.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.
![]()
(1)求直线DE和抛物线的表达式;
(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;
(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2
,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,下列说法:
①甲、乙两地相距1800千米;
②点B的实际意义是两车出发后4小时相遇;
③m=6,n=900;
④动车的速度是450千米/小时.
其中不正确的是( )
![]()
A.①B.②C.③D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.
(1)当MN为何值时,点P恰好落在BC上?
(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,设二次函数
,其中
.
(1)若函数
的图象经过点
,求函数
的表达式;
(2)若一次函数
的图象与函数
的图象经过
轴上同一点,探究实数
满足的关系式;若
随
的变化能取得最大值,证明:当
取得最大值时,抛物线
与
轴只有一个交点;
(3)已知点
和
在函数
的图象上,若
,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数片
与
的图象如图所示,下列说法:
①ab<0;
②函数y=ax+d不经过第一象限;
③函数y=cx+b中,y随x的增大而增大;
④3a+b=3c+d
其中正确的个数有()
![]()
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正确的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于点O.以O为圆心,OC为半径作⊙O,分别交AO,BC于点E,F.
(1)求证:AB是⊙O的切线;
(2)延长AO交⊙O于点D,连接CD,若AD=2AC,求tanD的值;
(3)在(2)的条件下,设⊙O的半径为3,求BC的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com