【题目】如图,在Rt△ABC中,∠ACB=90,AB=10,AC=6,点E、F分别是边AC、BC上的动点,过点E作ED⊥AB于点D,过点F作FG⊥AB于点G,DG的长始终为2.
![]()
(1)当AD=3时,求DE的长;
(2)当点E、F在边AC、BC上移动时,设
,求y关于x的函数解析式,并写出函数的定义域;
(3) 在点E、F移动过程中,△AED与△CEF能否相似,若能,求AD的长;若不能,请说明理由.
【答案】(1)DE=4;(2)
;(3)当AD的长为
或
时,△AED与△CEF相似.
【解析】
(1)根据勾股定理先求出BC的长,再通过证明△ADE∽△ACB,根据相似三角形的性质得出DE的长;
(2)通过证明△BGF∽△BCA,根据相似三角形的性质得出y关于x的函数解析式;
(3)由(1)(2)可得:
,分∠A=∠CEF,∠A=∠CFE两种情况求出△AED与△CEF相似时AD的长.
解:(1)∵∠ACB=90°,AB=10,AC=6
∴BC=8(1分)
∵ED⊥AB∴∠ADE=∠ACB=90°
又∵∠A=∠A
∴△ADE∽△ACB
∴DE=4;
(2)∵FG⊥AB∴∠BGF=∠BCA=90°
又∵∠B=∠B
∴△BGF∽△BCA
;
(3)由(1)(2)可得:![]()
当∠A=∠CEF时,
解得:
当∠A=∠CFE时,
解得:
∴当AD的长为
或
时,△AED与△CEF相似.
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 |
| 3 | … |
y | … | 3 |
| m | ﹣1 | 0 | ﹣1 | 0 |
| 3 | … |
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根.
![]()
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 ;
![]()
探索:(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数
与反比例函数
的图象交于
两点,过点
作
轴,垂足为点
,且
。
![]()
(1)求一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式
的解集;
(3)若
是反比例函数
图象上的两点,且
,求实数
的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AC=CD,若点E、F分别为边BC、CD上的两点,且∠EAF=∠CAD.
(1)求证:△ADF∽△ACE;
(2)求证:AE=EF.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )
![]()
A. 2B. 2
C.
D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+4x-1与y轴交于点C,CD∥x轴交抛物线于另一点D,AB∥x轴交抛物线于点A,B,点A在点B的左侧,且两点均在第一象限,BH⊥CD于点H.设点A的横坐标为m.
![]()
(1)当m=1时,求AB的长.
(2)若AH=
(CH-DH),求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形
中,
、
相交于点
,点
是
的中点,连接
并延长交
于点
,
,则下列结论:①
;②
;③
;④
,其中一定正确的是( ).
![]()
A.①②③④B.①②C.②③④D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线
与x轴、y轴分别交于A、B两点,点P从点A出发,沿折线AB﹣BO向终点O运动,在AB上以每秒5个单位长度的速度运动,在BO上以每秒3个单位长度的速度运动;点Q从点O出发,沿OA方向以每秒
个单位长度的速度运动.P,Q两点同时出发,当点P停止时,点Q也随之停止.过点P作PE⊥AO于点E,以PE,EQ为邻边作矩形PEQF,设矩形PEQF与△ABO重叠部分图形的面积为S,点P运动的时间为t秒.
![]()
(1)连结PQ,当PQ与△ABO的一边平行时,求t的值;
(2)求S与t之间的函数关系式,并直接写出自变量t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com