精英家教网 > 初中数学 > 题目详情

如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.

 

 

 

【答案】

【解析】本题考查的是勾股定理的应用

先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△BCD的形状,再利用三角形的面积公式求解即可.

如图,连接AC,

在Rt△ABC中,

在△ACD中,,而

△ACD是一个直角三角形。

=AB·BC+AC·CD=×3×4+×5×12=6+30=36.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案