Çë¹Û²ìÏÂÁеÈʽ£¬²¢°´ÒªÇóÍê³ÉÏÂÁÐÌî¿Õ£®
1
2
+1
=
1¡Á(
2
-1)
(
2
+1)(
2
-1) 
=
2
-1
2-1
=
2
-1
£®£¨¢ñ£©
1
2
+1
=
2-1
2
+1
=
(
2
)
2
-12
2
+1
=
(
2
+1)(
2
-1) 
2
+1
=
2
-1
£®£¨¢ò£©
£¨1£©ÇëÓò»Í¬µÄ·½·¨»¯¼ò
1
3
+
2
£®
¢Ù²ÎÕÕ£¨¢ñ£©Ê½µÃ
1
3
+
2
=
1¡Á(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
3-2
=
3
-
2
1¡Á(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
3-2
=
3
-
2
£®
¢Ú²ÎÕÕ£¨¢ò£©Ê½µÃ
1
3
+
2
=
3-2
3
+
2
=
(
3
+
2
)(
3
-
2
)
3
+
2
=
3
-
2
3-2
3
+
2
=
(
3
+
2
)(
3
-
2
)
3
+
2
=
3
-
2
£®
£¨2£©¸ù¾ÝÄãµÄ·¢ÏÖ£¬
1
n+1
+
n
=
n+1
-
n
n+1
-
n
£®£¨Óú¬nµÄ´úÊýʽֱ½Ó±íʾ£©
£¨3£©¼ÆË㣺
1
3
+1
+
1
5
+
3
+
1
7
+
5
+¡­+
1
2013
+
2011
=
2013
-1
2
2013
-1
2
£®
·ÖÎö£º£¨1£©ÔËÓ÷Ö×Ó¡¢·Öĸͬ³ËÒÔ·ÖĸµÄÓÐÀí»¯ÒòÊý£¬»ò½«·Ö×Ó±äÐΣ¬Òòʽ·Ö½â£¬Ô¼·Ö£»
£¨2£©ÔËÓã¨1£©ÖеÄÒ»ÖÖ·½·¨£¬½«¶þ´Î¸ùʽ·ÖĸÓÐÀí»¯£»
£¨3£©Ã¿¸ö·ÖĸµÄÁ½¸ö±»¿ª·½ÊýÏà²î2£¬·ÖĸÓÐÀí»¯Ê±£¬Ó¦¸Ã³ËÒÔ
1
2
£®
½â´ð£º½â£º£¨1£©¢Ù²ÎÕÕ£¨¢ñ£©Ê½µÃ
1
3
+
2
=
1¡Á(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
3-2
=
3
-
2
£¬
¢Ú²ÎÕÕ£¨¢ò£©Ê½µÃ
1
3
+
2
=
3-2
3
+
2
=
(
3
+
2
)(
3
-
2
)
3
+
2
=
3
-
2
£»
£¨2£©
1
n+1
+
n
=
n+1
-
n
(
n+1
+
n
)(
n+1
-
n
)
=
n+1
-
n
n+1-n
=
n+1
-
n
£¬
¹Ê´ð°¸Îª£º
n+1
-
n
£»
£¨3£©
1
3
+1
+
1
5
+
3
+
1
7
+
5
+¡­+
1
2013
+
2011

=
1
2
£¨
3
-1+
5
-
3
+
7
-
5
+¡­+
2013
-
2011
£©=
2013
-1
2
£¬
¹Ê´ð°¸Îª£º
2013
-1
2
£®
µãÆÀ£ºÖ÷Òª¿¼²é¶þ´Î¸ùʽµÄÓÐÀí»¯£®¸ù¾Ý¶þ´Î¸ùʽµÄ³Ë³ý·¨·¨Ôò½øÐжþ´Î¸ùʽÓÐÀí»¯£®¶þ´Î¸ùʽÓÐÀí»¯Ö÷ÒªÀûÓÃÁËÆ½·½²î¹«Ê½£¬ËùÒÔÒ»°ã¶þ´Î¸ùʽµÄÓÐÀí»¯ÒòʽÊÇ·ûºÏƽ·½²î¹«Ê½µÄÌØµãµÄʽ×Ó£®¼´Ò»Ïî·ûºÅºÍ¾ø¶ÔÖµÏàͬ£¬ÁíÒ»Ïî·ûºÅÏà·´¾ø¶ÔÖµÏàͬ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÓëÀí½â
ÔĶÁ²¢¹Û²ìÏÂÁÐÏàÓ¦µÈʽ£¬Ì½¾¿ÆäÖеĹæÂÉ£º
1
1¡Á2
=1-
1
2
=
1
2
£¬
1
1¡Á2
+
1
2¡Á3
=1-
1
2
+
1
2
-
1
3
=
2
3
£¬
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4
£¬????????
°´¹æÂÉÌî¿Õ£º
£¨1£©
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
1
4¡Á5
=
4
5
4
5
£»
£¨2£©
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
1
4¡Á5
+¡­+
1
99¡Á100
99
100
99
100
£»
£¨3£©Èç¹ûnΪÕýÕûÊý£¬ÇëÄã¼ÆË㣺
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
1
4¡Á5
+¡­+
1
n¡Á(n+1)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012-2013ѧÄ긣½¨Ê¡ÈªÖÝÒ»ÖÐÆßÄê¼¶ÉÏѧÆÚÆÚÖп¼ÊÔÊýѧÊÔÌ⣨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÓëÀí½â    
ÔĶÁ²¢¹Û²ìÏÂÁÐÏàÓ¦µÈʽ£¬Ì½¾¿ÆäÖеĹæÂÉ£º
£¬    

°´¹æÂÉÌî¿Õ:
(1) _______________£»(3·Ö)
£¨2£©______________£»(4·Ö)
£¨3£©Èç¹ûnΪÕýÕûÊý£¬ÇëÄã¼ÆË㣺(5·Ö)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012-2013ѧÄ긣½¨Ê¡ÆßÄê¼¶ÉÏѧÆÚÆÚÖп¼ÊÔÊýѧÊÔÌ⣨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÓëÀí½â    

ÔĶÁ²¢¹Û²ìÏÂÁÐÏàÓ¦µÈʽ£¬Ì½¾¿ÆäÖеĹæÂÉ£º

£¬     

      

°´¹æÂÉÌî¿Õ:

(1) _______________£»(3·Ö)

£¨2£©______________£»(4·Ö)

£¨3£©Èç¹ûnΪÕýÕûÊý£¬ÇëÄã¼ÆË㣺(5·Ö)

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

Çë¹Û²ìÏÂÁеÈʽ£¬²¢°´ÒªÇóÍê³ÉÏÂÁÐÌî¿Õ£®
Êýѧ¹«Ê½£®£¨¢ñ£©
Êýѧ¹«Ê½£®£¨¢ò£©
£¨1£©ÇëÓò»Í¬µÄ·½·¨»¯¼òÊýѧ¹«Ê½£®
¢Ù²ÎÕÕ£¨¢ñ£©Ê½µÃÊýѧ¹«Ê½=______£®
¢Ú²ÎÕÕ£¨¢ò£©Ê½µÃÊýѧ¹«Ê½=______£®
£¨2£©¸ù¾ÝÄãµÄ·¢ÏÖ£¬Êýѧ¹«Ê½=______£®£¨Óú¬nµÄ´úÊýʽֱ½Ó±íʾ£©
£¨3£©¼ÆË㣺Êýѧ¹«Ê½=______£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸