精英家教网 > 初中数学 > 题目详情
一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起,且正三角形的中心O恰好为扇形的圆心,接着,他把扇形绕点O转动,….
(1)小明思考这样一个问题:在把扇形绕点O转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变,请说明理由;若认为不能保持不变,请问对这两张纸片再增加什么条件,就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由.
(2)由这一游戏,你还能联想到怎样的图形在变换过程中,也具有类似的性质?请画出图形精英家教网,并作简要阐述,不要求证明.
分析:(1)因为重叠部分总等于三角形面积的
1
3
,可以先从三角形考虑,O为中心也就是与正三角形的中心角重合,所以应为120°,证明是要分两种情况:即特殊和一般,特殊情况时就是猜想所用的情况,显然成立,一般情况的证明从三角形全等把四边形的面积分解成两个三角形,最后再归到正三角形的中心角为120°的三角形.
(2)利用相同的作法还可以得到点O为正方形ABCD的对称中心,另一正方形OEFG绕点O旋转过程中,两个正方形的重叠部分面积保持不变,总是正方形ABCD的面积的
1
4
解答:解:(1)两张纸片的重叠部分面积不一定会保持不变.应增加条件“扇形纸片的圆心角∠DOE为120°”
简证如下:连接OB、OC,因为点O是等边△ABC的中心,所以OB、OC为角平分线,且OB=OC,可证△OGB≌△OFC,从而重叠部分面积等于△OBC的面积,即等于等边△ABC的面积的
1
3
(定值).
精英家教网精英家教网
(2)由这一游戏,还能联想到如图所示的两个正方形:点O为正方形ABCD的对称中心,另一正方形OEFG绕点O旋转过程中,两个正方形的重叠部分面积保持不变,总是正方形ABCD的面积的
1
4
点评:本题考查了全等三角形的判定与性质及等边三角形的性质;猜想时从三角形考虑是解答本题的突破点,证明时一般情况的证明容易被学生忽视.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(2a+b)(a+b)=2a2+3ab+b2
(1)图③可以解释为等式:
 

(2)在虚线框中用图①中的基本图形拼成若干块(每种至少用一次)拼成一个矩形,使拼出的矩形面积为2a2+7ab+3b2,并标出此矩形的长和宽.
(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下关系式
xy=
m2-n2
4
;②x+y=m;③x2-y2=m•n;④x2+y2=
m2+n2
2
其中正确的有几个
 

A.1个     B.2个      C.3个       D.4个.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

10、一天,小明和爸爸去登山,已知山底到山顶的路程为300米,小明先走了一段路程,爸爸才开始出发,图中两条线段表示小明和爸爸离开山脚登山的路程S(米)与登山所用时间t(分钟)的关系(从爸爸开始登山时计时)根据图象,下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起,且正三角形的中心O恰好为扇形的圆心,接着,他把扇形绕点O转动,….
(1)小明思考这样一个问题:在把扇形绕点O转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变,请说明理由;若认为不能保持不变,请问对这两张纸片再增加什么条件,就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由.
(2)由这一游戏,你还能联想到怎样的图形在变换过程中,也具有类似的性质?请画出图形,并作简要阐述,不要求证明.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省镇江市丹徒区中考数学模拟试卷(解析版) 题型:解答题

一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的一张正三角形纸片和一张扇形纸片叠在一起,且正三角形的中心O恰好为扇形的圆心,接着,他把扇形绕点O转动,….
(1)小明思考这样一个问题:在把扇形绕点O转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?你若认为重叠部分面积能保持不变,请说明理由;若认为不能保持不变,请问对这两张纸片再增加什么条件,就能使得扇形绕点O转动过程中它们的重叠部分面积一定会保持不变?请说明理由.
(2)由这一游戏,你还能联想到怎样的图形在变换过程中,也具有类似的性质?请画出图形,并作简要阐述,不要求证明.

查看答案和解析>>

同步练习册答案