【题目】如图,点
,
在反比例函数图象上,
轴于点
,
轴于点
,
.
![]()
(1)求
,
的值并写出反比例函数的表达式;
(2)连接
,
是线段
上一点,过点
作
轴的垂线,交反比例函数图象于点
,若
,求出点
的坐标.
科目:初中数学 来源: 题型:
【题目】△ABC在直角坐标系内的位置如图所示.
(1)分别写出A、B、C的坐标;
(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;
(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′、BB′.
![]()
判断△AB′B的形状为 ;
若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道当电压一定时,电流与电阻成反比例函数关系.现有某学生利用一个最大电阻为
的滑动变阻器及一电流表测电源电压,结果如图所示.
![]()
电流
(安培)与电阻
(欧姆)之间的函数解析式为________;
当电阻在
之间时,电流应在________范围内,电流随电阻的增大而________;
若限制电流不超过
安培,则电阻在________之间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,直线
分别交
轴
轴于
、
两点,
、
的长满足
,点
是直线
上一点,且
.
![]()
求直线
的解析式;
求过点
的反比例函数解析式;
点
在反比例函数图象上是否存在一点
,使以点
、
、
、
为顶点,
为腰的四边形为梯形?若存在,请直接写出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是圆圆设计的“作等腰三角形一腰上的高线”的尺规作图过程 .
已知:△
,
.
求作:
边上的高线.
作法:如图,
![]()
①以点
为圆心,
为半径画弧,交
于点
和点
;
②分别以点
和点
为圆心,大于
长为半径画弧,两弧相交于点
;
③作射线
交
于点
.
所以线段
就是所求作的
边上的高线.
根据圆圆设计的尺规作图过程,完成下列问题:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面证明.
证明:∵
,
∴点
在线段
的垂直平分线上(__________) (填推理的依据).
∵__________=__________,
∴点
在线段
的垂直平分线上.
∴
是线段
的垂直平分线.
∴
⊥
.
∴线段
就是
边上的高线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,然后回答问题 .
已知
,
,
,
,
,
,….,当
为大于1的奇数时,
;当
为大于1的偶数时,
.
(1)求
;(用含
的代数式表示)
(2)直接写出
;(用含
的代数式表示)
(3)计算:
= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE交BC于点F,连接BE.
(1)求证:AB⊥BE;
(2)当AD=BF时,求∠BEF的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是_____.
(1)EF=
OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=
;(4)OGBD=AE2+CF2.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com