精英家教网 > 初中数学 > 题目详情
正方形ABCD边长为4,M、N分别是BC、CD上两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:△ABM∽△MCN;
(2)当M点运动到BM的长为1时,求CN的长;
(3)设BM=x,当M点运动到什么位置时,梯形ABCN面积为10,求x的值;
(4)当M点运动到何处时△ABM∽△AMN?
分析:(1)由四边形ABCD是正方形,可得∠B=∠C=90°,又由同角的余角相等,可得∠BAM=∠CMN,然后由有两角对应相等的三角形相似,即可得△ABM∽△MCN;
(2)由正方形ABCD边长为4,BM的长为1,则可求得CM的值,然后由相似三角形的对应边成比例,即可求得CN的长;
(3)由BM=x,根据相似三角形的对应边成比例,可表示出CN的长,又由梯形ABCN面积为10,即可求得x的值;
(4)由相似三角形的对应边成比例,即可得当
AB
BM
=
AM
MN
时,△ABM∽△AMN,继而可求得答案.
解答:(1)证明:∵四边形ABCD是正方形,
∴∠B=∠C=90°,
∴∠BAM+∠AMB=90°,
∵AM⊥MN,
∴∠AMB+∠CMN=90°,
∴∠BAM=∠CMN,
∴△ABM∽△MCN;

(2)解:∵正方形ABCD边长为4,BM=1,
∴CM=BC-BM=3,
∵△ABM∽△MCN,
∴AB:CM=BM:CN,
4
3
=
1
CN

∴CN=
3
4


(3)解:∵正方形ABCD边长为4,BM=x,
∴CM=BC-BM=4-x,
∵△ABM∽△MCN,
∴AB:CM=BM:CN,
4
4-x
=
x
CN

∴CN=
x(4-x)
4

∵梯形ABCN面积为10,
∴S梯形ABCN=
1
2
(CN+AB)•BC=
1
2
×[
x(4-x)
4
+4]×4=10,
整理得:x2-4x+4=0,
解得:x=2;

(4)解:设BM=x,
∵正方形ABCD边长为4,
∴CM=BC-BM=4-x,
∵△ABM∽△MCN,
∴AB:CM=BM:CN,
4
4-x
=
x
CN

∴CN=
x(4-x)
4

∴在Rt△ABM中,AM2=AB2+BM2=16+x2
在Rt△CMN中,MN2=CM2+CN2=(4-x)2+[
x(4-x)
4
]2=
(4-x)2(16+x2)
16

∵∠B=∠AMN=90°,
∴当
AB
BM
=
AM
MN
时,△ABM∽△AMN,
∴当
AB2
BM2
=
AM2
MN2
,即
16
x2
=
16+x2
(4-x)2(16+x2)
16
时,△ABM∽△AMN,
解得:x=2,
∴BM=2,
∴当BM=2时△ABM与△AMN相似.
点评:此题考查了相似三角形的判定与性质、正方形的性质以及勾股定理等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD边长为2cm,以点B为圆心,AB的长为半径作弧
AC
,则图中阴影部分的面积为(  )
A、(4-π)cm2
B、(8-π)cm2
C、(2π-4)cm2
D、(π-2)cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD边长为2,点E在CB的延长线上,BD=BE,则tan∠BAE的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形ABCD边长为4cm,E,F分别为CD,BC的中点,动点P在线段AB上从B?A以2cm/精英家教网s的速度运动,同时动点Q在线段FC上从F?C以1cm/s的速度运动,动点G在PC上,且∠EGC=∠EQC,连接PD.设运动时间为t秒.
(1)求证:△CQE∽△APD;
(2)问:在运动过程中CG•CP的值是否发生改变?如果不变,请求这个值;若改变,请说明理由;
(3)当t为何值时,△CGE为等腰三角形并求出此时△CGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;
(3)梯形ABCN的面积是否可能等于11?为什么?

查看答案和解析>>

同步练习册答案