如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
![]()
(1)如图①,当
时,求
的值;
(2)如图②当DE平分∠CDB时,求证:AF=
OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=
BG.
解:(1)∵
,∴
。
∵四边形ABCD是正方形,∴AD∥BC,AD=BC。∴△CEF∽△ADF。
∴
。∴
。∴
。
(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF。
又∵AC、BD是正方形ABCD的对角线.∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD。
又∵∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD。∴AD=AF。
在Rt△AOD中,根据勾股定理得:
,∴AF=
OA。
(3)证明:连接OE,
![]()
∵点O是正方形ABCD的对角线AC、BD的交点,
∴点O是BD的中点。
又∵点E是BC的中点,∴OE是△BCD的中位线。
∴OE∥CD,OE=
CD。∴△OFE∽△CFD。
∴
。∴
。
又∵FG⊥BC,CD⊥BC,∴FG∥CD。∴△EGF∽△ECD。∴
。
在Rt△FGC中,∵∠GCF=45°,∴CG=GF。
又∵CD=BC,∴
。∴
。∴CG=
BG。
【解析】
试题分析:(1)利用相似三角形的性质求得EF于DF的比值,依据△CEF和△CDF同高,则面积的比就是EF与DF的比值,据此即可求解。
(2)利用角之间的关系到证得∠ADF=∠AFD,可以证得AD=AF,在Rt△AOD中,利用勾股定理可以证得。
(3)连接OE,易证OE是△BCD的中位线,然后根据△FGC是等腰直角三角形,易证△EGF∽△ECD,利用相似三角形的对应边的比相等即可证得。
科目:初中数学 来源: 题型:
| 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com