精英家教网 > 初中数学 > 题目详情
如图,某一时刻垂直于地面的大楼AC的影子一部分在地上(BC),另一部分在斜坡上(BD).已知坡角∠DBE=45°,BC=20米,BD=2
2
米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度AC.
分析:过点D作DH⊥CE,DG⊥AC,在两个直角三角形中分别求得DH=2,BH=2,然后根据同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求得AG=GD=BC+BH=22米,最后求得大楼的高度即可.
解答:解:过点D作DH⊥CE,DG⊥AC,
∵∠DBE=45°,BD=2
2

∴DH=2,BH=2,
∵同一时刻竖直于地面长1米的标杆的影长恰好也为1米,
∴AG=GD=BC+BH=22米,
∴楼高AC=AG+GC=AG+DH=24米,
∴大楼的高度为24米.
点评:本题考查了解直角三角形的应用,正确的构造两个直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在某一时刻,旗杆AB的影子落在平地BD和一坡度为1:
3
的斜坡DF上,若测得影长BC=6m,影长CE=4m,且此时测得垂直于地面的1m长标杆在地面上影长为2m,(假设旗杆AB与地面垂直,B、C、D三点共线,AB、BD、CF在同一平面内).则旗杆AB的高度是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某一时刻垂直于地面的大楼AC的影子一部分在地上(BC),另一部分在斜坡上(BD).已知坡角∠DBE=45°,BC=20米,BD=2数学公式米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度AC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某一时刻垂直于地面的大楼AC的影子一部分在地上(BC),另一部分在斜坡上(BD).已知坡角∠DBE=45°,BC=20米,BD=2
2
米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度AC.
精英家教网

查看答案和解析>>

同步练习册答案