精英家教网 > 初中数学 > 题目详情
如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,连接DE交AC于F,过D点作DG⊥AC于G点.
(1)证明:AG=
12
AD;
(2)若DF=EF,求证:CE=AD.
分析:(1)由△ABC是等边三角形就可以得出∠A=60°,由DG⊥AC就可以得出∠AGD=90°,从而得出∠ADG=30°,就可以得出结论;
(2)过点D作DH∥BC交AC于点H,可以得到△DHF≌△ECF,就有DH=CE,再证明△ADH是等边三角形就可以得出结论.
解答:解:(1)证明:∵△ABC是等边三角形,
∴∠A=60°,
∵DG⊥AC,
∴∠AGD=90°,
∵∠ADG=30°,
∴AG=
1
2
AD;
(2)过点D作DH∥BC交AC于点H,
∴∠ADH=∠B,∠AHD=∠ACB,∠FDH=∠E,
∵△ABC是等边三角形,
∴∠B=∠ACB=∠A=60°,
∴∠A=∠ADH=∠AHD=60°,
∴△ADH是等边三角形,
∴DH=AD,
在△DHF和△ECF中,
∠FDH=∠E
∠DFH=∠EFC
DF=EF

∴△DHF≌△ECF(AAS),
∴DH=CE,
∴CE=AD.
点评:本题考查了等边三角形判定及性质的运用,直角三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时作DH∥BC是难点,证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.
(1)若△ABC的面积是1,则△ADE的最小面积为
3
4
3
4

(2)求证:△AEB≌ADC;
(3)探究四边形BCGE是怎样特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,P为△ABC内任意一点,PE∥AB,PF∥AC.那么,△PEF是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.
 
(1)如图1,当n=2时,求
CE
CD
=
1
3
1
3

(2)如图2,当n=
1
3
时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当
n=3
n=3
时,C点为线段EM的中点.

查看答案和解析>>

同步练习册答案