精英家教网 > 初中数学 > 题目详情
宽与长的比是
5
-1
2
的矩形叫黄金矩形,心理学测试表明,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤:
第一步:作一个任意正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD交AD的延长线于F,
(1)请你根据以上作图步骤画出图形;
(2)请证明矩形DCEF为黄金矩形,(可取AB=2)
分析:(1)根据题中作图步骤即可画出图形;
(2)首先设出正方形的边长是2a,然后根据作图中的方法分别用a表示出矩形的长和宽,再进一步求得它们的比值,根据黄金矩形的概念即可判断.
解答:(1)解:如图;

(2)证明:在正方形ABCD中,取AB=2a,
∵N为BC的中点,
∴NC=
1
2
BC=a.
在Rt△DNC中,ND=
NC2+CD2
=
5
a,
又∵NE=ND,∴CE=NE-NC=(
5
-1)a,
CE
CD
=
5
-1
2

故矩形DCEF为黄金矩形.
点评:本题考查了黄金分割点的概念,熟记黄金比的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

宽与长的比是
5
-1
2
的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以精英家教网协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):
第一步:作一个正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD,交AD的延长线于F.
请你根据以上作法,证明矩形DCEF为黄金矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是一张宽与长之比为
5
-1
2
:1
的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm,则它的宽约为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

【再读教材】
宽与长的比是
5
-1
2
2
5
+1
(约为0.618)的矩形叫做黄金矩形.
下面,我们用宽为4cm的矩形纸片折叠一个黄金矩形.
第一步,在矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平.
第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.
第三步,折出内侧矩形的对角线AB,并把它折到图③中所示的AD处.
第四步,展平纸片,按照所得的D点折出DE,如图④…
【问题解决】
(1)图③中AB=
2
5
2
5
cm(保留根号);
(2)你发现图④中有几个黄金矩形?请都写出来,并选择其中一个说明理由;
(3)在图③中,连接BD,以AQ、BD为两直角边作直角三角形,求该直角三角形斜边的长.

查看答案和解析>>

同步练习册答案