如图,已知抛物线
与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.
![]()
(1)说明:
;
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当
的面积为
时,求
的值.
(1)理由见解析;(2)(
,
);(3)2.
【解析】
试题分析:(1)由y=0,得出的一元二次方程的解就是A、B两点的横坐标.由此可求出A、B的坐标。通过构建相似三角形求解,过O作OG∥AC交BE于G,那么可得出两组相似三角形:△GED∽△OGD、△BOG∽△BAE,可分别用这两组相似三角形得出OG与EC的比例关系、OG与AE的比例关系,从而得出CE、AE的比例关系.
(2)由已知可求C(2,8),再求AC所在直线解析式,根据△AEF∽△ACH可求E点坐标.
(3)由D是OC的中点可知S△OCE=2S△CDE,又由已知可求S△AOC=8,从而可求出CH、AH的值,从而可求
的值.
试题解析:(1)令y=0,则有-x2+2x+8=0.
解得:x1=-2,x2=4
∴OA=2,OB=4.
过点O作OG∥AC交BE于G
![]()
∴△CEG∽△OGD
∴![]()
∵DC=DO
∴CE=0G
∵OG∥AC
∴△BOG∽△BAE
∴![]()
∵OB=4,OA=2
∴
;
(2)由(1)知A(-2,0),且点C、点A到y轴的距离相等,
∴C(2,8)
设AC所在直线解析式为:y=kx+b
把 A 、C两点坐标代入求得k=2,b=4
所以y=2x+4
分别过E、C作EF⊥x轴,CH⊥x轴,垂足分别为F、H
![]()
由△AEF∽△ACH可求EF=
,OF=
,
∴E点坐标为(
,
)
(3)连接OE
∵D是OC的中点,
∴S△OCE=2S△CED
∵S△OCE: S△AOC=CE:CA=2:5
∴S△CED:S△AOC=1:5.
∴S△AOC=5S△CED=8
∴![]()
∴CH=8
![]()
考点: 二次函数综合题.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com