精英家教网 > 初中数学 > 题目详情

【题目】已知圆O的直径为4cm,A是圆上一固定点,弦BC的长为2cm,当△ABC为等腰三角形时,其底边上的高为_____

【答案】或2,或

【解析】

BC为底边时,如图1,连接AO延长与BC交于F,由全等三角形的判定定理得△ABO≌△ACO,∠BAO=∠CAO,得△ABF≌△ACF,由全等的性质得,BF=CF,由垂径定理得,AF⊥BC,AF为△ABC的高,利用勾股定理可得OF,可得AF的长;

BC为腰时,如图2,连接BO并延长与AC交于F,由全等三角形的判定定理得△ABO≌△CBO,∠ABO=∠CBO,得△ABF≌△CBF,由全等的性质得,AF=CF,由垂径定理得,BF⊥AC,BF为△ABC的高,由勾股定理逆定理得,△BOC为等腰直角三角形,∠CBO=45°,由等腰三角形的性质得,BF=CF,利用勾股定理可得BF的长;

当如图3所示时,BC为底,利用垂径定理得BF=CF=,利用勾股定理可得AF的长.

解:当BC为底边时,如图1,连接AO延长与BC交于F,

在△ABO与△ACO中,

∴△ABO≌△ACO(SSS),

∴∠BAO=∠CAO,

在△ABF与△ACF中,

∴△ABF≌△ACF(SAS),

∴BF=CF=

∴AF⊥BC,

∴AF为△ABC的高,

在直角△BOF中,

OF=

∴AF=2+

当BC为腰时,如图2,连接BO并延长与AC交于F,

同理可证得:△ABO≌△CBO,

∴∠ABO=∠CBO,

可得△ABF≌△CBF,

∴AF=CF,

∴BF⊥AC,BF为△ABC的高,

∵OB2+OC2=8,BC2=8,

∴△BOC为等腰直角三角形,

∴∠CBO=45°,

∴CF=BF,

设CF=BF=x,

则2x2=8,

解得:x=2,

∴BF=2,

当如图3所示时,BC为底,

∵AF⊥BC,

∴BF=CF=

设AF=x,则OF=2﹣x,

∴(2﹣x)2+()2=22

解得:x=2+或x=2-

故答案为:2+或2或2-.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点EEGDE,使EG=DE,连接FG,FC.

(1)请判断:FGCE的关系是___;

(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;

(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC ∠BAC=90°,AB=AC,DBC上一动点连接AD,过点AAEAD,并且始终保持AE=AD,连接CE.

(1)求证△ABD △ACE

(2)若AF平分∠DAEBCF,探究线段BD,DF,FC之间的数量关系并证明

(3)在(2)的条件下BD=3,CF=4,AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBDCFBDEF分别为垂足.

1)求证:四边形AECF是平行四边形;

2)如果AE=3EF=4,求AFEC所在直线的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

请根据以上信息,回答下列问题:

(l)杨老师采用的调查方式是   (填“普查”或“抽样调查”);

(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数   

(3)请估计全校共征集作品的什数.

(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(提出问题)如图1,小东将一张AD12,宽AB4的长方形纸片按如下方式进行折叠:在纸片的一边BC上分别取点PQ,使得BP=CQ,连结APDQ,将△ABP△DCQ分别沿APDQ折叠得△APM△DQN,连结MN.小东发现线段MN的位置和长度随着点PQ的位置发生改变.

(规律探索)

1)请在图1中过点MN分别画ME⊥BC于点ENF⊥BC于点F

求证:①ME=NF②MN∥BC

(解决问题)

2)如图1,若BP=3,求线段MN的长;

3)如图2,当点P与点Q重合时,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x,点A1坐标为(10),过点A1x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按此做法进行下去,点A4的坐标为______,点An______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在□ABCD中,线段EF分别交ADACBC于点EOFEF⊥ACAO=CO

1)求证:△AOE≌△COF

2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:

月均用水量xt

频数(户)

频率

0x≤5

6

0.12

5x≤10

12

0.24

10x≤15

m

0.32

15x≤20

10

n

20x≤25

4

0.08

25x≤30

2

0.04

1)本次调查采用的调杳方式是   (填普査抽样调查),样本容量是   

2)补全频数分布直方图:

3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15x≤20”的圆心角度数是   

4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?

查看答案和解析>>

同步练习册答案