【题目】如图,矩形A'B'C'D'在矩形ABCD的内部,AB∥A'B',AD∥A'D',且AD=12,AB=6,设AB与A'B'、BC与B'C'、CD与C'D'、DA与D'A'之间的距离分别为a,b,c,d,
(1)a=b=c=d=2,矩形A'B'C'D'∽矩形ABCD吗,为什么?
(2)若矩形A'B'C'D'∽矩形ABCD,a,b,c,d应满足什么等量关系?请说明理由.
![]()
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求证:无论m取何值时,方程总有实数根;
(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线
与
轴交于点
,与
轴交于点
,已知二次函数的图象经过点
、
和点
.
![]()
求
、
两点坐标;
求该二次函数的关系式
若抛物线的对称轴与
轴的交点为点
,则在抛物线的对称轴上是否存在点
,使
是以
为腰的等腰三角形?如果存在,直接写出
点的坐标;如果不存在,请说明理由;
点
是线段
上的一个动点,过点
作
轴的垂线与抛物线相交于点
,当点
运动到什么位置时,四边形
的面积最大?求出四边形
的最大面积及此时
点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点H为BD中点,CH的延长线交AB于点F.
(1)求证:CH=EH;
(2)若∠CAB=40°,求∠EHF;
(3)如图②,若△DAE≌△CEH,点Q为CH的中点,连接AQ,求证:AQ∥EH.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、An-1PnAnBn都是正方形,对角线OA1、A1A2、A2A3、……、An-1An都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点Pn(xn,yn)在反比例函数y=
(x>0)的图象上,已知B1 (-1,1)。
(1)反比例函数解析式为________;
(2)求点P1和点P2的坐标;
(3)点Pn的坐标为(____________)(用含n的式子表示),△PnBnO的面积为__________。(直接填答案)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
![]()
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
![]()
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
是反比例函数
在第一象限图象上一点,点
的坐标为
.
![]()
当点
的横坐标逐渐增大时,
的面积将如何变化?
若
与
均为直角三角形,其中
,求此反比例函数的解析式及点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com