精英家教网 > 初中数学 > 题目详情

如图,以△ABC的三边为边长在BC的同侧作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是什么四边形?试说明理由.
(2)当△ABC满足条件________时,四边形ADEF是矩形;当△ABC满足条件________时,四边形ADEF是菱形;当△ABC满足条件________时,四边形ADEF是正方形;当△ABC满足条件________时,四边形ADEF不存在.选择其中一个试说明理由.

(1)解:是平行四边形,
理由是:∵△BCE、△ACF、△ABD都是等边三角形,
∴AB=AD,AC=CF,BC=CE,∠BCE=∠ACF,
∴∠BCE-∠ACE=∠ACF-∠ACE,
即∠BCA=∠FCE,
在△BCA和△ECF中

∴△BCA≌△ECF,
∴AB=EF,
∵AB=AD,
∴AD=EF,
同理DE=AF,
∴四边形ADEF是平行四边形.

(2)解:当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵∠DAF=360°-∠DAB-∠BAC-∠FAC=360°-60°-60°-150°=90°,
四边形ADEF是平行四边形,
∴平行四边形ADEF是矩形;

当AB=AC时,四边形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四边形ADEF是平行四边形,
∴平行四边形ADEF是菱形;
当AB=AC,∠BAC=150°时,四边形ADEF是正方形,
理由是:∵四边形ADEF是平行四边形,
已证:AD=AF,∠DAF=90°,
∴平行四边形ADEF是正方形,
当∠BAC是60°时,四边形ADEF不存在,
理由是:此时D、A、F三点共线,
故答案为:∠BAC=150°,AB=AC,AB=AC,∠BAC=150°,∠BAC=60°.
分析:(1)根据等边三角形的性质推出∠BCE=∠FCA=60°,求出∠BCA=∠FCE,证△BCA≌△ECF,推出AD=EF=AB,同理得出DE=AF,即可得出答案;
(2)根据矩形、菱形、正方形的判定证出即可.
点评:本题考查了对平行四边形、矩形、菱形、正方形的判定的理解和运用,同时也运用了等边三角形性质和全等三角形的性质和判定,题目较好,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,以△ABC的三边为边,在BC的同一侧分别作三个等边三角形,△ABD,△BCE和△ACF.
(1)求证:△DBE≌△ABC≌△FEC;
(2)判断四边形ADEF的形状并证明你的结论;
(3)当△ABC满足什么条件时,四边形ADEF为矩形?(写出猜想即可,不要求证明)
(4)当△ABC满足什么条件时,四边形ADEF为菱形?(写出猜想即可,不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,以△ABC的三边为边,在BC的同侧分别另作三个等边三角形,即△ABD,△BCE,△ACF.
(1)求证:四边形ADEF是平行四边形;
(2)在△ABC满足什么条件时,四边形ADEF是矩形;
(3)对于任意△ABC,四边形ADEF是否总存在?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是
1
2
π
1
2
π

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的各边为边分别向外作正方形,所得到的三个正方形的面积分别为S1=36,S2=64,S3=100,则△ABC的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF

(1)证明四边形ADEF是平行四边形.
(2)当△ABC满足条件
∠BAC=150°
∠BAC=150°
时,四边形ADEF为矩形.
(3)当△ABC满足条件
∠BAC=60°
∠BAC=60°
时,四边形ADEF不存在.
(4)当△ABC满足条件
AB=AC且∠BAC≠60°(或AB=AC≠BC)
AB=AC且∠BAC≠60°(或AB=AC≠BC)
时,四边形ADEF为菱形.

查看答案和解析>>

同步练习册答案