精英家教网 > 初中数学 > 题目详情
如图
(1)如图(1),∠ADC=100°,试求∠A+∠B+∠C的度数;
(2)如图(2)所示,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,试求∠O的度数.
分析:(1)延长AD交BC于点E,根据三角形的外角等于与它不相邻的两个内角之和可求∠A+∠B+∠C的度数.
(2)由三角形CQD和三角形AQB可知30°+2∠1=20°+2∠2;根据三角形ODH和三角形ABH可知:∠O+∠1=∠A+∠2;由两式得:∠O=25°.
解答:解:(1)延长AD交BC于点E,
∵∠AEC是△ABE的一个外角,
∴∠AEC=∠A+∠B.
∵∠ADC是△DEC的一个外角,
∴∠A+∠B+∠C=∠C=∠AEC+∠C=∠ADC=100°.

(2)由三角形CQD和三角形AQB可知:
∠C+∠CDQ=∠A+∠ABQ;
∵∠A=20°,∠C=30°;
∴30°+∠CDQ=20°+∠ABQ;①
∵DO平分∠CDA,BO平分∠CBA;
∴∠CDP=∠ODA,∠CBA=∠OBA;
设∠CDP=∠ODA=∠1,∠CBA=∠OBA=∠2;
∴根据三角形ODH和三角形ABH可知:∠O+∠1=∠A+∠2;②
①式可变为30°+2∠1=20°+2∠2;③
由②③得:∠O=25°.
点评:本题考查了三角形的内角和定理及三角形外角的性质,解题的关键是善于在复杂的图形中找到三角形的外角并正确的利用其性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,精英家教网原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图1.然后,他用这8块瓷砖又拼出一个正方形,如图2,中间恰好空出一个边长为1的小正方形(阴影部分),假设长方形的长y,宽为x,且y>x.
精英家教网
(1)请你求出图1中y与x的函数关系式;
(2)求出图2中y与x的函数关系式;
(3)在图3中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;
(4)根据以上讨论完成下表,观察x与y的关系,回答:如果给你任意8个相同的长方形,你能否拼成类似图1和图2的图形?说出你的理由.
 图(2)中小正方形边长  1  2  3  4
 x  3  6  9  12
 y  5  10  15  20

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个正方形ABCD,OEFG的边长都是a,其中O是正方形ABCD的中心.精英家教网
(1)请你说出图②到图③是怎样形成的?图②中的四边形OMCN的面积是多少?图③中的△OBC的面积是多少?
(2)你能求出图④中四边形OMCN的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A(-3,1),B(a,-3),是一次函数y=kx+b的图象与反比例函数y=
mx
精英家教网的图象的两个交点.
(1)求此一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

29、阅读探究题:数学课上,张老师向大家介绍了等腰三角形的基本知识:有两条边相等的三角形叫等腰三角形,如图1所示:在△ABC中,若AB=AC,则△ABC为等腰三角形且有∠B=∠C.此时,张老师出示了问题:如图2,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在线段AB上取AB的中点M,连接ME,则AM=EC,在此基础上,请聪明的同学们作进一步的研究:
(1)求出角∠AME的度数;
(2)你能在小明的思路下证明结论吗?
(3)小颖提出:如图3,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

查看答案和解析>>

同步练习册答案