精英家教网 > 初中数学 > 题目详情
在表达式S=
x1-x2+x3-x4
中,x1、x2、x3、x4是1、2、3、4的一种排列(即:x1、x2、x3、x4取1、2、3、4中的某一个数,且x1、x2、x3、x4互不相同).则使S为实数的不同排列的种数有
 
种.
分析:若不考虑二次根式有意义的条件,因此,共有P44种排列方法,但其中x1+x3=3的共有C24P22种.所以,它们的差即为所求.
解答:解:∵x1-x2+x3-x4≥0,
∴x1+x3≥x2+x4
符合条件的排列数是:P44-C42P22=24-8=16(种)
故答案为:16.
点评:本题考查了排列与组合的问题.解答此题时,要分清排列与组合的区别.排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线过点A(x1,0)、B(x2,0)、C(0,-8),x1、x2是方程
1
2
x2-x-4=0的两根,且x1>x2,点D是此抛物线的顶点.
(1)求这条抛物线的表达式;
(2)填空:(1)问题中抛物线先向上平移3个单位,再向右平移2个单位,得到的抛物线是
y=(x-3)2-6
y=(x-3)2-6

(3)在第一象限内,问题(1)中的抛物线上是否存在点P,使S△ABP=
1
5
S四边形ABCD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)已知抛物线C1的函数解析式为y=ax2+bx-3a(b<0),若抛物线C1经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.
(1)求抛物线C1的顶点坐标.
(2)已知实数x>0,请证明x+
1
x
≥2,并说明x为何值时才会有x+
1
x
=2.
(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.
(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数表达式为y=
-4x

(1)画出此反比例函数图象并写出此函数图象的一个特征.
(2)若点(x1,y1),(x2,y2)都在此反比例函数图象上且x1>x2,比较y1与y2的大小(直接写出结果)
(3)现有一点A(m,-4)在此反比例函数图象上,另一点B(2,-1),在x轴上找一点P使得△ABP的周长最小,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年湖南省郴州市二中高一奥赛辅导班选拔赛数学试卷(解析版) 题型:填空题

在表达式S=中,x1、x2、x3、x4是1、2、3、4的一种排列(即:x1、x2、x3、x4取1、2、3、4中的某一个数,且x1、x2、x3、x4互不相同).则使S为实数的不同排列的种数有     种.

查看答案和解析>>

同步练习册答案