【题目】如图,已知
是⊙
的直径,
,
和
是圆
的两条切线,
,
为切点,过圆上一点
作⊙
的切线
,分别交
,
于点
,
,连接
,
.若
,则
等于( )
![]()
A. 0.5 B. 1
C.
D. ![]()
【答案】C
【解析】
连接OM、OC,根据圆周角定理可得∠AOC=2∠ABC=60°,由切线长定理可得MA=MC且∠MAO=∠MCO=90°,利用HL证明Rt△AOM≌Rt△COM,即可得∠AOM=∠COM=
∠AOC=30°,在Rt△AOM中求得AM的长即可.
连接OM,OC,
![]()
∵∠ABC=30°,
∴∠AOC=2∠ABC=60°,
∵MA,MC分别为⊙O的切线,
∴MA=MC,且∠MAO=∠MCO=90°,
在Rt△AOM和Rt△COM中,
MA=MC,OM=OM,
∴Rt△AOM≌Rt△COM(HL),
∴∠AOM=∠COM=
∠AOC=30°,
在Rt△AOM中,OA=
AB=1,∠AOM=30°,
∴tan30°=
,即
,
解得:AM=
.
故答案为:
.
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,
,
是
的中点,
是线段
延长线上一点,过点
作
,与线段
的延长线交于点
,连结
、
.
![]()
求证:
;
若
,试判断四边形
是什么样的四边形,并证明你的结论;
若
为
的中点,求证:
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′.
(1)在图2中,除△ADC与△C′BA′全等外,请写出其他2组全等三角形;① ;② ;
(2)请选择(1)中的一组全等三角形加以证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).
(1)求抛物线及直线AC的解析式;
(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;
(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有( )
![]()
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
![]()
(1)求BD的长;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数
的图象与
轴交于点
、
,且
,与
轴的正半轴的交点在
的下方.下列结论:①
;②
;③
;④
.其中正确结论的个数是( )个.
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com