精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB=AC,AD=BD=BC.在BC延长线上取点C1,连接DC1,使DC=CC1,在CC1延长线上取点C2,在DC1上取点E,使EC1=C1C2,同理FC2=C2C3,若继续如此下去直到Cn,则∠Cn的度数为____(结果用含的代数式表示)

【答案】n×72°.

【解析】

先根据三角形内角和等于180°和等腰三角形的性质可求∠ACB的度数,再根据三角形外角的性质和等腰三角形的性质可得∠C1的度数,依此类推,可求∠Cn的度数.

AB=AC,
∴∠ACB=ABC,
AD=BD=BC,
∴∠ACB=BDC,A=ABD,
∵∠BDC=A+ABD,
∴∠ACB=180°÷2.5=72°,
∴∠C1=×72°;
C2=(2×72°;

Cn=(n×72°.
故答案为:(n×72°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,定点A(21),点B在直线yx上,且横坐标为2,动点Px轴上运动,当线段PAPB最短时,点P的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )

A.44°
B.66°
C.88°
D.92°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=6,AB=4,点E,G,H,F分别在AB,BC,CD,AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE,PF,PG,PH,则△PEF和△PGH的面积和等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD内接于⊙O,点E是 上一点(不与A、B重合),点F是 上一点,连接OE,OF,分别与AB,BC交于点G,H,有下列结论:
=
②△OGH是等腰三角形;
③四边形OGBH的面积随着点E位置的变化而变化;
④若BG=1﹣ ,则BG,GE, 围成的面积是 +
其中正确的是(把所有正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.

(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC会平行吗?说明理由

(2)ADBC的位置关系如何?为什么?

(3)BC平分∠DBE?为什么

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:

自来水销售价格

污水处理价格

每户每月用水量

单价:元/吨

单价:元/吨

17吨以下

a

0.80

超过17吨但不超过30吨的部分

b

0.80

超过30吨的部分

6.00

0.80

(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)
已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.
(1)求a、b的值;
(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?

查看答案和解析>>

同步练习册答案