精英家教网 > 初中数学 > 题目详情
如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.
(1)判断△ABE的形状,并证明你的结论;
(2)用含b代数式表示四边形ABFE的面积;
(3)求证:a2+b2=c2
分析:(1)利用旋转的性质得出∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,AB=AE,即可得出△ABE的形状;
(2)利用四边形ABFE的面积等于正方形ACFD面积,即可得出答案;
(3)利用四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进而证明即可.
解答:(1)△ABE是等腰直角三角形,
证明:∵Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,
∴∠BAC=∠DAE,
∴∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,
又∵AB=AE,
∴△ABE是等腰直角三角形;

(2)∵四边形ABFE的面积等于正方形ACFD面积,
∴四边形ABFE的面积等于:b 2

(3)∵S正方形ACFD=S△BAE+S△BFE
即:b2=
1
2
c2+
1
2
(b+a)(b-a),
整理:2b2=c2+(b+a)(b-a)
∴a2+b2=c2
点评:此题主要考查了旋转的性质以及图形面积求法和勾股定理的证明等知识,根据已知得出S正方形ACFD=S△BAE+S△BFE是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,-1)和(0,-5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.
(1)写出A,B两点的坐标,并求直线AB的解析式;
(2)如图2,将△A0B沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).
①当x为何值时,线段DE平分△AOB的面积;
②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函精英家教网数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.
活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积.
精英家教网
小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:
 

活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长.
精英家教网精英家教网
小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:
 
.AE的长是
 

活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△AOB中,∠AOB=90°,∠ABO=30°,OB=4,以O点为原点,OB边所在直线为x轴,建立直角坐标系.在x轴上取一点D(2,0),作一个边长为2的等边△PDE,此时P点与O点重合,E点在线段AB上(如图).将△PDE沿x轴向右平移,直线AB与直线ED交于点F,回答下列问题:
(1)找出一条与OP始终相等的线段,并说明理由;
(2)设点P与原点的距离为x,此时等边△PDE与Rt△AOB重叠部分的面积为y,求y与x的函数关系式,并写出自变量x的取值范围.(图2,图3为备用图)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闸北区一模)已知:如图1,在Rt△OAC中,AO⊥OC,点B在OC边上,OB=6,BC=12,∠ABO+∠C=90°.动点M和N分别在线段AB和AC边上.
(l)求证△AOB∽△COA,并求cosC的值;
(2)当AM=4时,△AMN与△ABC相似,求△AMN与△ABC的面积之比;
(3)如图2,当MN∥BC时,将△AMN沿MN折叠,点A落在四边形BCNM所在平面的点为点E.设MN=x,△EMN与四边形BCNM重叠部分的面积为y,试写出y关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

同步练习册答案