【题目】如图,
是等边三角形
内一点,将线段
绕点
顺时针旋转60°得到线段
,连接
.若
,
,
,则四边形
的面积为___________.
![]()
【答案】6+4![]()
【解析】
连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.
连结PP′,如图,
![]()
∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∵线段CP绕点C顺时针旋转60°得到线段CP',
∴CP=CP′=4,∠PCP′=60°,
∴△PCP′为等边三角形,
∴PP′=PC=4,
∵∠ACP+∠BCP=60°,∠ACP+∠ACP′=60°,
∴∠BCP=∠ACP′,且AC=BC,CP=CP′
∴△BCP≌△ACP′(SAS),
∴AP′=PB=5,
在△APP′中,∵PP′2=42=16,AP2=32=9,AP′2=52=25,
∴PP′2+AP2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴S四边形APCP′=S△APP′+S△PCP′=
AP×PP′+
×PP′2=6+4
,
故答案为:6+4
.
科目:初中数学 来源: 题型:
【题目】如图,正方形
中,
是对角线
上一个动点,连结
,过
作
,
,
,
分别为垂足.
![]()
(1)求证:
;
(2)①写出
、
、
三条线段满足的等量关系,并证明;②求当
,
时,
的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形
中,
,点
是射线
上一动点,以
为边向右侧作等边
,点
的位置随着点
的位置变化而变化.
![]()
(1)如图1,当点
在菱形
内部或边上时,连接
,
与
的数量关系是______,
与
的位置关系是______;
(2)当点
在菱形
外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点
在线段
的延长线上时,连接
,若
,
,求四边形
的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
![]()
①AD和EF互相垂直平分;
②AE=AF;
③当∠BAC=90°时,AD=EF;
④DE是AB的垂直平分线.
其中正确的是_________________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于点Q,点I为△OPQ的内心,过O、I和D三点的圆的半径为r,则当点P在弧AD上运动时,求r的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D
(1)求证:PC是⊙O的切线;
(2)求证:
;
(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=
,CF=5,求BE的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.
![]()
(1)如图,当点E在线段BC上时,∠BDF=α.
①按要求补全图形;
②∠EBF=______________(用含α的式子表示);
③判断线段 BF,CF,DF之间的数量关系,并证明.
(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com