精英家教网 > 初中数学 > 题目详情
(2012•威海)如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为
(503
3
-503,503
3
+503)
(503
3
-503,503
3
+503)
分析:过点A1作A1B⊥x轴,作A1C∥x轴A2C∥y轴,相交于点C,然后求出点A1的坐标,以及A1C、A2C的长度,并出A2、A3、A4、A5、A6的坐标,然后总结出点的坐标的变化规律,再把2012代入规律进行计算即可得解.
解答:解:如图,过点A1作A1B⊥x轴,作A1C∥x轴A2C∥y轴,相交于点C,
∵OA1=1,OA1与x轴的夹角为30°,
∴OB=OA1•cos30°=1×
3
2
=
3
2

A1B=OA1•sin30°=1×
1
2
=
1
2

∴点A1的坐标为(
3
2
1
2
),
∵A2A1⊥OA1,OA1与x轴的夹角为30°,
∴∠OA1C=30°,∠A2A1C=90°-30°=60°,
∴∠A1A2C=90°-60°=30°,
同理可求:A2C=OB=
3
2
,A1C=A1B=
1
2

所以,点A2的坐标为(
3
2
-
1
2
3
2
+
1
2
),
点A3的坐标为(
3
2
-
1
2
+
3
2
3
2
+
1
2
+
1
2
),即(
3
-
1
2
3
2
+1),
点A4的坐标为(
3
-
1
2
-
1
2
3
2
+1+
3
2
),即(
3
-1,
3
+1),
点A5的坐标为(
3
-1+
3
2
3
+1+
1
2
),即(
3
3
2
-1,
3
+
3
2
),
点A6的坐标为(
3
3
2
-1-
1
2
3
+
3
2
+
3
2
),即(
3
3
2
-
3
2
3
3
2
+
3
2
),
…,
当n为奇数时,点An的坐标为(
n+1
4
3
-
n-1
4
n-1
4
3
+
n+1
4
),
当n为偶数时,点An的坐标为(
n
4
3
-
n
4
n
4
3
+
n
4
),
所以,当n=2012时,
n
4
3
-
n
4
=503
3
-503,
n
4
3
+
n
4
=503
3
+503,
点A2012的坐标为(503
3
-503,503
3
+503).
故答案为:(503
3
-503,503
3
+503).
点评:本题考查了点的坐标的规律变化问题,作出辅助线,求出各点的横坐标与纵坐标的规律变化的数值,然后依次写出前几个点的坐标,根据坐标与点的序号的特点找出点的坐标的通式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•威海)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,在?ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组
y=-x+2
y=2x-1
y=-x+2
y=2x-1
的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为
AC
上一动点,AK,DC的延长线相交于点F,连接CK,KD.
(1)求证:∠AKD=∠CKF;
(2)若AB=10,CD=6,求tan∠CKF的值.

查看答案和解析>>

同步练习册答案