已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
【小题1】若点D坐标是(-8,0),求A、B两点坐标及k的值
【小题2】若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.![]()
【小题1】∵D(-8,0),
∴B点的横坐标为-8,代入y=
x中,得y=-2,
∴B点坐标为(-8,-2),
而A、B两点关于原点对称,∴A(8,2),
∴k=8×2=16; (4分)
【小题2】∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,
∴mn=k,B(-2m,-
),C(-2m,-n),E(-m,-n),
∴S矩形DCNO=2mn=2k,
∴S△DBO=
mn=
k,
∴S△OEN=
mn=
k,
∴S四边形OBCE=S矩形DCNO-S△DBO-S△OEN=k,
∴k=4,
由直线y=
x及双曲线y=
,得A(4,1),B(-4,-1),
∴C(-4,-2),M(2,2),
设直线CM的解析式是y=ax+b,
由C、M两点在这条直线上,得![]()
解得a=b=
,
∴直线CM的解析式是y=
x+
.(8分)
解析
科目:初中数学 来源:2012届江苏泰兴市黄桥初级中学八年级下期中数学试卷(带解析) 题型:解答题
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
【小题1】若点D坐标是(-8,0),求A、B两点坐标及k的值.
【小题2】若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
【小题3】在(2)的条件下,若P为x轴上一点,是否存在△OMP为等腰三角形?若存在,写出P点坐
标;若不存在,说明理由。![]()
查看答案和解析>>
科目:初中数学 来源:2008年初中毕业升学考试(江苏南通卷)数学(带解析) 题型:解答题
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.![]()
查看答案和解析>>
科目:初中数学 来源:2013年初中数学单元提优测试卷-反比例函数与一次函数的图像(带解析) 题型:解答题
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x轴交双曲线
于点E,交BD于点C.![]()
(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
查看答案和解析>>
科目:初中数学 来源:2008年初中毕业升学考试(江苏南通卷)数学(解析版) 题型:解答题
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com