精英家教网 > 初中数学 > 题目详情
(实验与推理)如图,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),三角尺的另一条直角边与∠CBM的平分线BF相交于点F,当点E在AB边的中点位置时:
(1)通过测量DE,EF的长度,猜想DE与EF满足的数量关系是______;
(2)连接点E与AD边的中点N,猜想NE与BF满足的数量关系是______;
(3)请证明你的上述两猜想.

【答案】分析:可利用两角夹一边求解△DNE≌△EBF(ASA),进而可得出线段相等.
解答:(1)DE=EF;
(2)NE=BF;
证明:∵四边形ABCD是正方形N,E分别为AD,AB的中点
∴DN=EB,AN=AE
∵BF平分∠CBM
∴∠EBF=90°+45°=135°
又∵AN=AE,∠A=90°
∴∠DNE=180°-45°=135°
∴∠EBF=∠DNE
又∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°
∴∠NDE=∠BEF,
在△DNE和△EBF中

∴△DNE≌△EBF(ASA)
∴DE=EF,NE=BF.
点评:能够利用正方形的性质求解一些三角形的全等问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4
,…
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相精英家教网同的关系式并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、(实验与推理)如图,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),三角尺的另一条直角边与∠CBM的平分线BF相交于点F,当点E在AB边的中点位置时:
(1)通过测量DE,EF的长度,猜想DE与EF满足的数量关系是
DE=EF

(2)连接点E与AD边的中点N,猜想NE与BF满足的数量关系是
NE=BF

(3)请证明你的上述两猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
(1)问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
(2)实验与探究:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
写出上面问题中线段PG与PC的位置关系
垂直
垂直
; 及
PG
PC
=
3
3

(3)归纳与发现:将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
运用与拓广:
若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源:2012年湖北省咸宁市中考数学模拟试卷(七)(解析版) 题型:解答题

请阅读下列材料:
(1)问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.
(2)实验与探究:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
写出上面问题中线段PG与PC的位置关系______; 及=______

查看答案和解析>>

同步练习册答案