¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©ÓÉRt¡÷ACF¡×Rt¡÷BAO£¬µÃCF=

OA=

t£¬ÓÉ´ËÇó³öCFµÄÖµ£»
£¨2£©¢ÙÓÉRt¡÷ACF¡×Rt¡÷BAO£¬¿ÉÒÔÇóµÃAFµÄ³¤¶È£»ÈôµãCÂäÔÚÏß¶ÎBDÉÏ£¬ÔòÓС÷DCF¡×¡÷DBO£¬¸ù¾ÝÏàËÆ±ÈÀýʽÁз½³ÌÇó³ötµÄÖµ£»
¢ÚÓÐÁ½ÖÖÇé¿ö£¬ÐèÒª·ÖÀàÌÖÂÛ£ºµ±0£¼t¡Ü8ʱ£¬ÈçÌâͼ1Ëùʾ£»µ±t£¾8ʱ£¬Èç´ðͼ1Ëùʾ£®
£¨3£©±¾ÎÊÉæ¼°Í¼ÐεļôÆ´£®ÔÚ¡÷CDFÑØxÖá×óÓÒÆ½ÒƵĹý³ÌÖУ¬·ûºÏÌõ¼þµÄ¼ôÆ´·½·¨ÓÐÈýÖÖ£¬ÐèÒª·ÖÀàÌÖÂÛ£¬·Ö±ðÈç´ðͼ2-4Ëùʾ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬Ò×Ö¤Rt¡÷ACF¡×Rt¡÷BAO£¬
¡à

£®
¡ßAB=2AM=2AC£¬
¡àCF=

OA=

t£®
µ±t=2ʱ£¬CF=1£®
£¨2£©¢ÙÓÉ£¨1£©Öª£¬Rt¡÷ACF¡×Rt¡÷BAO£¬
¡à

£¬
¡àAF=

OB=2£¬¡àFD=AF=2£¬£®
¡ßµãCÂäÔÚÏß¶ÎBDÉÏ£¬¡à¡÷DCF¡×¡÷DBO£¬
¡à

£¬¼´

£¬
½âµÃt=

-2»òt=-

-2£¨Ð¡ÓÚ0£¬ÉáÈ¥£©
¡àµ±t=

-2ʱ£¬µãCÂäÔÚÏß¶ÎBDÉÏ£»
¢Úµ±0£¼t¡Ü8ʱ£¬ÈçÌâͼ1Ëùʾ£º
S=

BE•CE=

£¨t+2£©•£¨4-

t£©=

t
2+

t+4£»
µ±t£¾8ʱ£¬Èç´ðͼ1Ëùʾ£º

S=

BE•CE=

£¨t+2£©•£¨

t-4£©=

t
2-

t-4£®
£¨3£©·ûºÏÌõ¼þµÄµãCµÄ×ø±êΪ£º£¨12£¬4£©£¬£¨8£¬4£©»ò£¨2£¬4£©£®
ÀíÓÉÈçÏ£º
ÔÚ¡÷CDFÑØxÖá×óÓÒÆ½ÒƵĹý³ÌÖУ¬·ûºÏÌõ¼þµÄ¼ôÆ´·½·¨ÓÐÈýÖÖ£º
·½·¨Ò»£ºÈç´ðͼ2Ëùʾ£¬µ±F¡äC¡ä=AF¡äʱ£¬µãF¡äµÄ×ø±êΪ£¨12£¬0£©£¬

¸ù¾Ý¡÷C¡äD¡äF¡ä¡Õ¡÷AHF¡ä£¬¡÷BC¡äHΪƴ³ÉµÄÈý½ÇÐΣ¬´ËʱC¡äµÄ×ø±êΪ£¨12£¬4£©£»
·½·¨¶þ£ºÈç´ðͼ3Ëùʾ£¬µ±µãF¡äÓëµãAÖØºÏʱ£¬µãF¡äµÄ×ø±êΪ£¨8£¬0£©£¬

¸ù¾Ý¡÷OC¡äA¡Õ¡÷BAC¡ä£¬¿ÉÖª¡÷OC¡äD¡äΪƴ³ÉµÄÈý½ÇÐΣ¬´ËʱC¡äµÄ×ø±êΪ£¨8£¬4£©£»
·½·¨Èý£ºµ±BC¡ä=F¡äD¡äʱ£¬µãF¡äµÄ×ø±êΪ£¨2£¬0£©£¬

¸ù¾Ý¡÷BC¡äH¡Õ¡÷D¡äF¡äH£¬¿ÉÖª¡÷AF¡äC¡äΪƴ³ÉµÄÈý½ÇÐΣ¬´ËʱC¡äµÄ×ø±êΪ£¨2£¬4£©£®
µãÆÀ£º±¾Ì⿼²éÁË×ø±êÆ½ÃæÄÚ¼¸ºÎͼÐεĶàÖÖÐÔÖÊ£¬ÊÇÒ»µÀÄѶȽϴóµÄÖп¼Ñ¹ÖáÌâ£®Éæ¼°µ½µÄ֪ʶµã°üÀ¨ÏàËÆÈý½ÇÐΡ¢È«µÈÈý½ÇÐΡ¢µãµÄ×ø±ê¡¢¼¸ºÎ±ä»»£¨Ðýת¡¢Æ½ÒÆ¡¢¶Ô³Æ£©¡¢Í¼ÐεļôÆ´¡¢½â·½³ÌµÈ£¬·Ç³£È«Ã棻·ÖÀàÌÖÂÛµÄ˼Ïë¹á´©µÚ£¨2£©¢ÚÎʺ͵ڣ¨3£©ÎÊ£¬µÚ£¨3£©ÎÊ»¹¿¼²éÁ˼¸ºÎͼÐεĿռäÏëÏóÄÜÁ¦£®±¾ÌâÉæ¼°¿¼µãÖڶ࣬ÄÚº·á¸»£¬¶Ô¿¼ÉúµÄÊýѧ×ÛºÏÄÜÁ¦ÒªÇó½Ï¸ß£®