【题目】在平面直角坐标系中,反比例函数与二次函数
的图象交于点
和点
.
(1)当
时,求反比例函数的解析式;
(2)已知经过原点O的两条直线AB与CD分别与双曲线
交于A,B和C,D,那么AB与CD互相平分,所以四边形ACBD是平行四边形问:平行四边形ACBD能否成为矩形?能否成为正方形?若能,请说明线段AB,CD的位置关系;若不能,请说明理由;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
【答案】(1)
;(2)能成为矩形,不能成为正方形,线段AB与CD互相平分且相等;(3)k的值为
或
.
【解析】
(1)直接把点A(1,k)代入反比例函数的解析式即可,再把k=2代入即可;
(2)根据A、C可以无限接近坐标系但是不能落在坐标轴上,故AB与CD无法垂直,故可得出结论;
(3)先把k当作已知条件表示出Q点的坐标,根据A、B关于原点O中心对称可知当OQ=OA=OB时,△ABQ是以AB为斜边的直角三角形,由OQ2=OA2,即可得出关于k的一元二次方程,求出k的值即可.
(1)
反比例函数的图象过点
,
反比例函数的解析式是
,
当
时,反比例函数的解析式是
.
(2)能成为矩形,不能成为正方形,线段AB与CD互相平分且相等.
当AB,CD关于直线
或
对称时,AB与CD互相平分且相等,
四边形ACBD能成为矩形.
点A,B,C,D可以无限接近坐标轴但是不能落在坐标轴上,
AB与CD无法垂直,
四边形ACBD不能成为正方形.
(3)
二次函数的顶点Q的坐标是
,A,B关于原点O中心对称,
当
时,
是以AB为斜边的直角三角形.
由
,得
,
解得
,
,
当
是以AB为斜边的直角三角形时,k的值为
或
.
科目:初中数学 来源: 题型:
【题目】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=_______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.
(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;
(2)如图2,直线
与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;
(3)如图3,抛物线
与
轴交于A、B两点(点A在点B的左侧),与y轴交于点
,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①
;②顶点D在以AB为直径的圆上. 点
是抛物线
上任意一点,且
.若
恒成立,求m的最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.
(1)请说出这个几何体模型的最确切的名称是__ __;
(2)如图②是根据 a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和三角形),请在网格中画出该几何体的左视图;
(3)在(2)的条件下,已知h=20 cm,求该几何体的表面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
![]()
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).
![]()
(1)以点C为中心,把△ABC逆时针旋转90°,请在图中画出旋转后的图形△A′B′C,点B′的坐标为________;
(2)在(1)的条件下,求出点A经过的路径
的长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是
![]()
A.5个 B.4个 C.3个 D.2个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com