精英家教网 > 初中数学 > 题目详情

如果两条直线都与第三条直线平行,那么这两条直线相互       

 

【答案】

平行

【解析】本题考查的是平行的传递性

根据平行的传递性即可得到结果。

如果两条直线都与第三条直线平行,那么这两条直线相互平行。

思路拓展:解答本题的关键是掌握好平行的传递性。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、把命题“平行于同一条直线的两条直线平行”改写为“如果…那么…”的形式是
如果两条直线都与第三条直线平行,那么这两条直线也互相平行

查看答案和解析>>

科目:初中数学 来源: 题型:

5、下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是
两直线都平行于第三条直线
两直线都平行于第三条直线
,结论是
这两直线互相平行
这两直线互相平行

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠E=90°,那么∠B+∠D等于多少度?为什么?
解:过点E作EF∥AB,
得∠B+∠BEF=180°(
两直线平行同旁内角互补
两直线平行同旁内角互补
),
因为AB∥CD(
已知
已知
),
EF∥AB(所作),
所以EF∥CD(
如果两条直线都与第三条直线平行,那么这两条直线也互相平行
如果两条直线都与第三条直线平行,那么这两条直线也互相平行
).
∠D+∠DEF=180°
∠D+∠DEF=180°
(两直线平行,同旁内角互补),
所以∠B+∠BEF+∠DEF+∠D=
360
360
°(等式性质).
即∠B+∠BED+∠D=
360
360
°.
因为∠BED=90°(已知),
所以∠B+∠D=
270
270
°(等式性质).

查看答案和解析>>

科目:初中数学 来源: 题型:

如果两条直线都与第三条直线平行,那么这两条直线
互相平行
互相平行
.也叫做平行线的传递性.

查看答案和解析>>

同步练习册答案