精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,AD⊥BC,DE⊥AC,M为DE的中点,AM与BE相交于N,AD与BE相交于F.
求证:
(1)
DE
CE
=
AD
CD
;     
(2)△BCE∽△ADM;
(3)猜想AM与BE的位置关系,并予以说明理由.
分析:(1)由AD与BC垂直,DE与AC垂直,利用垂直的定义得到一对直角相等,再由一对公共角,利用两对对应角相等的两三角形相似得到△DEC∽△ADC,根据相似三角形的对应边成比例得到比例式,变形后即可得证;
(2)由三角形ADC与三角形DEC都为直角三角形,利用同角的余角相等得出一对角相等,根据M为中点,得到DE=2DM,AB=AC且AD⊥BC,利用三线合一得到D为BC的中点,可得出CD=
1
2
BC,代入(1)得出的比例式中,变形后得到两对对应边相等,利用两对对应边且夹角相等的两三角形相似可得证;
(3)AM与BE的位置关系是垂直,由(2)得出的两三角形相似,利用相似三角形的对应角相等得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到△BFD∽△AFN,利用相似三角形的对应角相等得到∠BDF=∠ANF,由AD垂直于BC,得到∠BDF为直角,可得出∠ANF为直角,利用垂直的定义得到AM与BE垂直,得证.
解答:(1)解:∵AD⊥BC,DE⊥AC,
∴∠ADC=∠DEC=90°,又∠C=∠C,
∴△DEC∽△ADC,
DE
AD
=
CE
DC
,即
DE
CE
=
AD
CD

(2)解:∵∠ADC=∠DEC=90°,
∴∠ADM+∠EDC=90°,∠EDC+∠BCE=90°,
∴∠ADM=∠BCE,
又∵AB=AC,AD⊥BC,
∴D为BC的中点,即BD=CD=
1
2
BC,
∵M为DE的中点,
∴DM=EM=
1
2
DE,
由(1)得
DE
CE
=
AD
CD
,即
1
2
DE
CE
=
AD
2DC

DM
CE
=
AD
BC

∴△BCE∽△ADM;

(3)AM⊥BE,理由为:
证明:∵△BCE∽△ADM,
∴∠CBE=∠DAM,又∠BFD=∠AFN,
∴△BFD∽△AFN,
∴∠BDF=∠ANF,又∠BDF=90°,
∴∠ANF=90°,
则AM⊥BE.
点评:此题考查了相似三角形的判定与性质,其中相似三角形的判定方法有:两对对应角相等的两三角形相似;两边对应成比例且夹角相等的两三角形相似;三边对应成比例的两三角形相似,本题第二问用的是第二种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案