精英家教网 > 初中数学 > 题目详情

作业宝如图,直线数学公式经过点B(数学公式,2),且与x轴交于点A.将抛物线数学公式沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)直线AB交抛物线数学公式的右侧于点D,问点B是AD中点吗?试说明理由;
(3)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F.当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式.

解:(1)设直线与y轴交于点M,
将x=-,y=2代入y=x+b得b=3,
∴y=x+3,
当x=0时,y=3,当y=0时x=-3
∴A(-3,0),M(0,3);
∴OA=3,OM=3,
∴tan∠BAO==
∴∠BAO=30°.

(2)联立直线AB和抛物线的解析式,有:
,解得:
∴D();
已知:A(-3,0)、B(,2),显然点B不是AD的中点.

(3)设抛物线C的解析式为y=(x-t)2,则P(t,0),E(0,t2),
∵EF∥x轴且F在抛物线C上,根据抛物线的对称性可知F(2t,t2),
把x=2t,y=t2代入y=x+3
t+3=t2
解得t1=-,t2=3
∴抛物线C的解析式为y=(x+2或y=(x-32
分析:(1)首先将B点坐标代入直线AB的解析式中,在确定出b值后进而能得出直线AB与x、y轴的交点坐标,若设直线AB与y轴的交点为M,那么在Rt△AOM中,根据OA、OM的长可求出∠OAB的正切值,由此得出∠BAO的度数.
(2)联立直线AB和抛物线的解析式,在求出点D的坐标后,根据A、B、D三点的坐标来判断点B是否为AD的中点.
(3)根据“左加右减、上加下减”的平移规律先设出抛物线C的表达式,即可得出E点的坐标;点E为抛物线C与y轴的交点,点F为直线AB与抛物线C的交点,也可以理解为点E、F都在抛物线C的图象上,若EF∥x轴,那么点E、F必关于抛物线对称轴对称,首先根据点E的坐标和抛物线对称轴方程表示出点F的坐标,再代入直线AB的解析式中进行求解即可.
点评:此题的难度适中,在(1)题中,求出直线AB的解析式,题目也就解决了大半;(2)题着重考查的是一次函数与二次函数的交点坐标的求法;(3)题中,点E、F关于抛物线对称轴对称是不容易想到的地方,此外,二次函数的平移规律也是需要牢记的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线l经过点A(4,0)和点B(0,4),且与二次函数y=ax2的图象在第一象限内相交于点P,若△AOP的面积为
92
,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,若S△OMN=9,则a的值是(  )
A、
2
3
B、-
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l经过点A(-3,1)、B(0,-2),将该直线向右平移2个单位得到直线l′.
(1)在图中画出直线l′的图象;
(2)求直线l′的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•赤峰)如图,直线L经过点A(0,-1),且与双曲线c:y=
mx
交于点B(2,1).
(1)求双曲线c及直线L的解析式;
(2)已知P(a-1,a)在双曲线c上,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天河区一模)如图,直线l经过点A(1,0),且与曲线y=
m
x
(x>0)交于点B(2,1).过点P(p,p-1)(p≥2)作x轴的平行线分别交曲线y=
m
x
(x>0)和y=-
m
x
(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案