精英家教网 > 初中数学 > 题目详情
(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=
3
3
分析:根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.
解答:解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,
∴∠DBC=
1
2
∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=1,
∴AD=DC=1,
∵△ABC是等边三角形,
∴BC=AC=1+1=2,BD⊥AC,
在Rt△BDC中,由勾股定理得:BD=
22-12
=
3

即DE=BD=
3

故答案为:
3
点评:本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄冈) 已知一个正棱柱的俯视图和左视图如图,则其主视图为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈)已知一元二次方程x2-6x+C=0有一个根为2,则另一根为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈) 已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈)已知反比例函数y=
6x
在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=
6
6

查看答案和解析>>

同步练习册答案